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Abstract

The purpose of this article is to present a range of theories with
proof-theoretic ordinal 1)(I'g41). This ordinal parallels the ordinal
of predicative analysis, I'g, and our theories are parallel to classical
theories of strength I'g such as ID,, FPg, ATRy, E%—DCD + (SUB), and
¥1-ACo + (SUB). We also relate these theories to the unfolding of 1D;
which was already presented in the PhD thesis of the first author as a
system of strength ¥(I'g1).
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1 Introduction

The ordinal ¢(T'qy1) appeared first in Bachmann [2], there denoted by
©F,, +1(1)+1(1).E| This was the paper where Bachmann introduced the idea of
using assigned fundamental sequences to ordinals of the third number class
in order to define large countable ordinals, and this is what Howard [I7] uses
in his original ordinal analysis of ID;. ID; is the theory of one generalized
positive inductive definition, and its proof-theoretic ordinal is now known as
the Bachmann-Howard ordinal.

Miller [22] proposed that ¢ (I'g41) should be the proof-theoretic ordinal
of a theory that relates to ID; as predicative analysis relates to first order
arithmetic. Feferman’s unfolding program [13] provides a way to identity such
a system because the unfolding of first order arithmetic is proof-theoretically
equivalent to predicative analysis with proof-theoretic ordinal I'y (cf. Feferman
and Strahm [15]).

For a history of the Bachmann method of describing constructive ordinals,
and how it gave way to the more modern approach, we refer to Crossley and
Bridge Kister [11] and the preface of Buchholz, Feferman, Pohlers and Sieg
[7].

1See section [2| for details on the notation system.



Buchholtz [5] recently proved that the unfolding of ID; has proof-theoretic
ordinal ¢(I'g41), which indeed relates to 1(eq41) (the ordinal of ID;) as I'y
relates to gy (the ordinal of first order Peano arithmetic).

In this paper we survey a range of further systems which also have proof-
theoretic strength (T4 1), for example 21-DC§ + (SUB®), ATRS + (SUB®),
FPS and ID*. .

Hancock [16] separately conjectured that t(I'qsq) is the ordinal of a
certain kind of Martin-Lof type theory. This is made precise and verified in a
companion article, which also identifies a system of explicit mathematics of
strength ¥(To41).

The remainder of this paper is organized as follows: In the next section we
set up some ordinal-theoretic preliminaries, including the definition of ¢ (I'g41)
and a review of derivation operators in the sense of Buchholz. Section [3]is
centered around subsystems of second order arithmetic. Namely, we introduce
systems 31-DCJ + (SUB®), ATRS, and FP§ resulting from their well-known
relatives 3{-DCy + (SUB), ATRy, and FPy by admitting least fixed points
of arithmetical operators in the base language of second order arithmetic.
In Section [4] we review the unfolding of IDy; it is employed in Section [5] to
establish the lower bound ¢ (I'g41) of the above-mentioned systems via a
formalized inductive model construction. Section [flis devoted to the definition
of finitely iterated fixed point theories ID? for n < w and a reduction of FPg
to the union of these theories, IAD'<w. In Section , we sketch the main lines

of the ordinal analysis of |/|5'<w, determining its proof-theoretic upper bound
¥(Pg41). The paper concludes with a final discussion on related systems of
strength H (1) in the setting of Martin-Lof type theory as well as Feferman’s

explicit mathematics.

2 Ordinal notations

In this section we try to give an account of the ordinal-theoretic environment
and the ordinal-theoretic tools needed for putting the results of this article
into perspective. We assume that the reader is familiar with the basic ordinal
theory, the Veblen hierarchy of normal functions and collapsing functions
a la Buchholz. A full exposition can be found in Buchholz and Schiitte [§],
Pohlers [23] 24], and Schiitte [25].

Let On be the collection of all ordinals, €2 the least uncountable ordinal,
and AP the collection of all additive principal numbers, meaning that o € AP
iff (Vn,é < a)(n+€& < a). By a =yr oy + -+ + a,, we express that

a=a;+---+a, and a,...,a, € AP and a,<---<a;<a.



Then the following result about the existence of the Cantor normal form is
standard.

Lemma 1. For every ordinal o with 0 < o and o ¢ AP there exist uniquely
determined ordinals o, ..., a, such that o =yp a1 + -+ - + .

The binary Veblen function ¢ is inductively defined by ©0¢ := w¢ for all
ordinals ¢ and by choosing pa to be the enumeration function of the closed
and unbounded collection {£ € On : V3 < a(pBE =€)} if @ > 0. An ordinal
a is called strongly critical iff o = pal, and we let SC be the collection of all
strongly critical ordinals. Now we set

a=yrppy = a=pPfy and p,y<a

and obtain the following normal form property. For a proof see, for example,
Pohlers [23] or Schiitte [25].

Lemma 2. For every ordinal o € AP\ SC there exist uniquely determined
ordinals 8 and vy such that o =np @B7.

It is common to write I',, for the a-th strongly critical ordinal, hence I is
the normal function enumerating SC'. Since I'g = €2, it follows that 'y is
the least strongly critical ordinal greater than Q.

We now introduce for all ordinals o and  sets of ordinals C(«, ) and
ordinals 9« following Buchholz [6].

Definition 3. The sets of ordinals C(«, 3) and the ordinals 1« are defined
for all ordinals a and 8 by induction on a.

1. {0,Q} U B C C(a, B).

2. If n,€ € C(a, B), then ) + ¢ € C(a, B) and gné € C(a, B).
3. If £ < o and € € C(a, B), then ¥¢ € C(a, B).

4. 1o = min{B € On : C(a, B) N Q C B}.

The sets C(a, #) and the ordinals 1)« have a series of important properties
whose proofs are not difficult and can be found in the references mentioned
above.



Lemma 4. For all ordinals o, aq, s, 8,71, - -, Yn, we have:
1. If B is a limit ordinal, then C(a, 5) = |J{C(, &) : £ < 5}.
2. Cla,a) N =Pa.

3. Ya e SC.

4. If y=np 1+ + 7 and v € C(a, B), then v1,...,7, € C(a, B).
5. If v =nr o772 and v € C(a, B), then 11,72 € C(a, B).

6. If a1 < ag and oy € Clag, Yay), then Yay < Pas.

7. If a1 < ag, then Yoy < Yas and Clay, Yay) C Clag, Yas).

8. C(a,0) = C(a, Ya).

So v is a weakly monotone function from On to the strongly critical
ordinals less than or equal to ¥)(I'gy1). It also follows that ¢(I'qyq) is the
largest segment of ordinals in C(I'gy1,¢gy1), i.e., the least ordinal that
cannot be generated by closing {0, 2} under addition, w-exponentiation, the
binary Veblen function ¢, and the function .

The function v is weakly monotone but not strictly monotone: for example,
if « = min{¢ € On : I'¢ = ¢}, then ¢ =T's for all § < o and Yy = « for
all v such that a < v < Q. In order to obtain unique representations of
the ordinals in C(I'g41,¥T'g41) we introduce a further normal form. Given
ordinals a and (8 we define

a=np P <= a=v¢f and [e C(B,9Yp).

A detailed proof of the following normal form theorem for the function ¢ can
be found in Pohlers [23].

Lemma 5. For every strongly critical ordinal o € C(Tgyq,¥lqyq) there
exists a uniquely determined ordinal B such that o =np V[3.

We end this section with some remarks about ordinal operators that will
used to define operator controlled derivations in the sense of Buchholz [6].

Definition 6. Let Pow(On) denote the collection of all sets of ordinals.

1. A class function
H : Pow(On) — Pow(On)

is called a deriwation operator iff it is monotone, inclusive plus idempo-
tent and satisfies the following properties for all X € Pow(On) and all
ordinals a, g, ...,



(i) {0,92} € H(X).

(ii) If @ =yp a1 + ...y, then
a€H(X) < {ai,...,a,} CTH(X).
(iii) If @ =nr pajag, then
a€H(X) <= {m,a} CH(X).

2. If H is a derivation operator, we define for all finite sets of ordinals m
and all ordinals o operators

H[m], H[o], Hy : Pow(On) — Pow(On)

by setting for all X € Pow(On):

Hm](X) = H(XUm),
Hlo](X) = HXU{o}),
Ho(X) = m{C(a,B) : X C C(a, 8) and 0 < «}.

Buchholz [6] provides a detailed analysis of derivation operators from
which, in particular, we get all the properties summarized in the next lemma.

Lemma 7. If H is a derivation operator, then we have for all finite sets of
ordinals m, all ordinals o, and all X € Pow(On):

1. H[m], H|[o|, and H, are derivation operators.
2. mCH(O) = Hml=mH.
3.0eH() = Ho]=H.

3 Subsystems of second order arithmetic

Our language Lo of second order arithmetic contains number variables a, b,
C, U, U, W, T, Y, 2, ... and set variables U, V. W, XY, Z, ... (both possibly with
subscripts), function symbols for all primitive recursive functions, relation
symbols for all primitive recursive relations, The relation symbol € for the
element relation between natural numbers and sets of natural numbers as well
as the standard logical connectives and auxiliary symbols. In addition, we
have a distinguished anonymous unary relation symbol R that we use to define

5



proof-theoretic ordinals and also plays a special role in the unfolding systems
(see below). The number terms and formulas of Ly are defined as usual,
and the arithmetic formulas of L5 are those without bounded set quantifiers;
number and set parameters are permitted in arithmetic formulas.

Moreover, we frequently make use of the vector notation ¢ as shorthand
for a finite string eq, ..., e, of expressions whose length is not important or
is evident from the context. Suppose now that @ is the string of variables
ai,...,a, and 7 the string of number terms ry,...,r,. Then A[F/d] is the
formula that is obtained from A by simultaneously replacing all free occur-
rences of the variables @ by the number terms 7; in order to avoid collision of
variables, a renaming of bounded variables may be necessary. If the formula A
is written as B[d], then we often simply write B[] instead of A[r/@]; further
variants of this notation below will be obvious.

The binary (infix) relation symbol = stands for the primitive recursive
equality relation, the binary (infix) relation symbol < for the primitive
recursive less-than relation, and ¢’ for the successor of t. Very often we also
write the same expression for a primitive recursive function (relation) as for
the associated function (relation) symbol. Equality is only taken as basic
symbol between numbers; equality between sets of numbers and functions is
defined as

U=V) = VYalaeU<+aecV).

In the following we make use of the standard primitive recursive coding
machinery in Lo: (ry,...,7,) stands for the primitive recursively formed
n-tuple of the number terms ry,...,r,; Seq is the primitive recursive set of
sequence numbers; [h(r) denotes the length of (the sequence number coded
by) r; if i < [h(r), then (r); is the i-th component of (the sequence coded by)
r,ie, r={(r)o,...,(r)mw=1) provided that r is a sequence number.

The first order language L is the sub-language of L5 in which only formulas
of Lo without set variables are permitted. Now we pick a fresh unary relation
symbol P and write £;(P) for the extension of £; by P, i.e., expressions of
the form P(t) are permitted as atomic formulas of £;(P). An £,(P) formula
is called P-positive if each occurrence of P in this formula is positive. We call
P-positive formulas that contain at most u free inductive operator forms and
let A[P, u] range over such forms. If A[P, u] does not contain the anonymous
relation symbol R, it is called a pure inductive operator form.

Now we extend the language £, to a new second order language L3 by
adding a fresh unary relation symbol Py for every pure inductive operator
form QA[P, u]; the number terms of L3 are, of course, the number terms of L.
An L35 formula is called elementary in case it does not contain bounded set
variables. As syntactic variables we use r, s,t, 19, Sg, to, . . . for number terms



and A, B,C, Ay, By, Cy, . .. for formulas of L3.

In the following we introduce a series of theories of second order arithmetic.
The weakest of those, the theory ACA( is formulated in £, and has the usual
axioms and rules of inference of two-sorted logic with equality for the first sort,
the axioms of primitive recursive arithmetic PRA for the primitive recursive
functions and relations plus the axiom schema of arithmetic comprehension,
ie.,

dXVa(a € X < Ala])

for all arithmetic formulas Afu] of £y, and the induction aziom
VX(0eX AValae X — d € X) = Va(aeY)).

Well-known extensions of ACA, are obtained by adding axioms about com-
prehension and choice, for example

(ALCA) Va(3XA[X,d] ¢ VXB[X,a]) — IYVa(aeY « IXAX,a]),
(X1-AQ) Va3aXCla, X] — 3IYVaCla, (Y)d],

(21-DC) Ya¥X3Y Do, X,Y] — 32Z%aDla, (2)%,(2)a],

where A[U,v], B[U,v|, Clu, V], and D]u,V, W] are arithmetic formulas of Ls.

In these formulations we are using the abbreviations
reU), = (rs)el,
reU)y = relU Ar={r)(r)r) A (r)h<s.

We write Al-CAq, 21-ACy, and X1-DCy for the theories ACA, + (A]-CA),
ACA; + (£1-AC), and ACA, + (X1-DC), respectively, and recall that Aj-CA
and Y1-ACy are conservative extensions of Peano arithmetic PA, whereas
¥1-DCy has proof-theoretic ordinal pw0. For details see Barwise and Schlipf
[3], Buchholz, Feferman, Pohlers, and Sieg |7, and Cantini [10].

Before turning to the next principle, we introduce some notation: If A and
Blv] are Lo formulas, then Ay[{a : Bla]}] indicates the result of substituting
Br] for each occurrence of (r € U) in A. The substitution rule is the rule of
inference

VXA
Ax[{a: Blal}]

for arithmetic Lo formulas A[U] and arbitrary Lo formulas B[v]. Obviously,
the bar rule

(SUB)

VX TI[4, X]
TI[<,{a : Bla]}]
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for binary primitive recursive relations < is a special case of (SUB). Here
TI[«, U] stands for the formula

Ve(Vy(ly<z — yelU) wxelU) - Ve(xeU).

From Feferman and Jéger [14] we know that Al-CAg+ (SUB), $1-ACy+ (SUB),
and Y1-DCq + (SUB) are proof-theoretically equivalent and of proof-theoretic
strength I'y.

In the later considerations two further theories in £, will play an important
role: The first is the theory ATRy — the fourth system of Friedman’s program
of reverse mathematics — that extends ACA, by the schema of arithmetic
transfinite recursion; a standard reference is Simpson [26]. The second is the
fixed point theory FPy, resulting from ACA, by adding the fixed point axioms

(FP) dXVa(a € X < A[X, a])

for all U-positive arithmetic formulas A[U, v]. As shown in Avigad [I], ATR,
and FPy are equivalent.

Theorem 8. An Ly formula is provable in ATRy if and only if it is provable
m FPO

After these preliminary remarks we now turn to the theories that interest
us most in this article. They are all formulated in the language £35 and
comprise the following least fixed point axioms

(ID.1) Va(A[Py, a] — Pa(a)),
(ID.2) VX (Va(A[X,a] - a € X) = Va(Py(a) = a € X)).

for all inductive operator forms 2([ P, u|. Please observe that (ID.2) only claims
minimality with respect to sets, not with respect to £3 definable classes.

The theory ACA{ is the L3 system that contains the axioms of ACAq
(formulated for L£3), all least fixed point axioms (ID.1) and (ID.2) plus the
comprehension schema

(E-CA) dXVa(a € X < Ala)),

for elementary L3 formulas Afu|. As a consequence, any Py defines a set in
ACAJ.

It is an easy exercise to show that ACAJ is a conservative extension of the
famous theory ID; of non-iterated positive inductive definitions; for details
about ID; cf., for example, Buchholz, Feferman, Pohlers, and Sieg [7] or
Pohlers [24].



The schemas (A}-CA®), (3{-AC®), and (X1-DC®) are the analogues of
(Al-CA), (31-AC), and (X1-DC) with the arithmetic £, formulas replaced
by elementary £3 formulas. Accordingly, the theories Aj-CAg, X1-AC], and
¥1-DC§ are defined to be the theories ACA] + (A]-CA®), ACA] + (X]-AC®),
and ACA] + (27-DC®).

Of course, there is also an analogue of the substitution rule for the language
L35. Simply consider

VXA
Ax[{a: Bla]}]

for all elementary £3 formulas A[U] and arbitrary £35 formulas Blv]. Thus
the bar rule for £ reads as

(SUB®)

VX TI[q, X]
TI[<,{a : Bla]}]

for binary relations < that are primitive recursive in the least fixed points Py
and arbitrary £3 formulas B[v], and is a special case of (SUB*)[]

In the following we shall prove that A{-CA§ + (SUB®), X1-ACS + (SUB®),
and Y{-DC + (SUB®) are theories with proof-theoretic ordinal ¢)(I'q, ;). Two
other interesting systems of the same strength are ATRj and FP{, obtained
from ATR, and FPq, respectively, by relativizing them to the language L£3.

More precisely, let the schema of elementary transfinite recursion be as the
schema of arithmetic transfinite recursion but with elementary £ formulas
instead of arithmetic £, formulas. Then ATR] is the extension of ACAj by
elementary transfinite recursion. Similarly, the fixed point axioms of £, are
lifted to

(FP*) AXVa(a € X < A[X,a))

for arbitrary U-positive elementary formulas A[U, v] of L3, and FP{ is the £3
theory ACAJ + (FP*).

There exists a close relationship between our theories formulated in £,
and their counterparts in £3. Consider an inductive operator form 2A[U, v]
together with the axiom schema

(LFP) 3X (Va(Ql[X, a] > a € X)AVY (Ya(U[Y,a] > a€Y)— X C Y))

for all inductive operator forms 2A[U, v]. Added to ACA, it implies that every
inductive operator form has a least fixed point, where “least” means least
with respect to all sets that are fixed points.

2Tt is because of (SUB®) that we restrict ourselves to pure operator forms in £3.
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Theorem 9. Let T be one of the theories ACAy, Al-CAq, Y1-ACy, ©1-DCy,
ATRg, or FPgy, which are all formulated in Ly. Then we have:

1. T*, which is formulated in L3, is a conservative extension of T + (LFP)
with respect to all Lo sentences.

2. ATR{ and FP{ prove the same L3 formulas.

Proof. Since every relation constant Py for an inductive operator form 2A[U, v]
defines a set, all instances of (LFP) are provable in the theories 7°°. Therefore,
T+ (LFP) C T*. To establish conservativity, we simply fix for each inductive
operator form A[U, v] the uniquely determined least fixed point U, which exists
according to (LFP), and interpret Py(t) as (¢t € U). These considerations
together with Theorem [8| also yield the second assertion. O

We write 9M[U] to express that U is ( the range of the sets of) a countable
coded w-model of ¥1-DCy in the sense of Simpson [26]. Elementhood in such
an U is then abbreviated by

VEU = ZJalV=(U)),

and V € U means that all components of 1% belong to U. Moreover, given
an arbitrary £, formula A, its relativization AV to U is obtained from A by
replacing all quantifiers 3X (... X ...) and VX (... X ...) by Jz(... (U)s...)
and Vz(...(U), ...), respectively. Note that AV is always arithmetic.

The theory ATR( has the following important property; cf. Simpson [26]
for a detailed proof and a discussion of the general context.

Theorem 10. The theory ATR, proves that
VXY (X €Y AMY)).

For the subsequent considerations we let 2o[U, v], 44 [U, v],A2[U, v], ... be
an arbitrary (but fixed) enumeration of all inductive operator forms and write

FilX] :=Va(A;[U,a] = a € U)AVY (Va(;[Y,a] 2 a€Y) = X CY),

expressing that set X is the least fixed point of ;[U,v]. For any natural
number n we write For(n) for the collection of all £3 formulas that do not
contain relation symbols Py, with n <.

Lemma 11. Let n be an arbitrary natural number. Under the assumptions

(7) A[ﬁ] is an Lo formula whose free set variables are from the list U,
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(i) L1-DCS + (SUB®) proves A[U] by a proof P such that all formulas

occurring in P belong to For(n),

(iii) the set variables W, ..., W, do not occur in P, and B[U] is the formula
obtained from A[U] by substituting (t € W;) for each subformula Py, (t),
1=0,...,n

the theory ATRy proves

((/n\(gz[ IAW, € 2)AT €2 A MZ ]) —>BZ[(7]).

=0

Proof. We proceed by induction on P. If A[U] is an axiom of £1-DCS, then
our assertion is obvious since we relativize with respect to countable coded
w-models of $1-DCy; if A[U] is the conclusion of a rule of inference different
from (SUB®), then our assertion follows directly from the induction hypothesis.
So it only remains to discuss the case that A[U] is the conclusion of (SUB®).
Then this inference has the form

VXC[U, X]
ClU,{z: DU, z]}]

Y

where A[U] is the formula C[U, {z : DU, z]}], C[U, V] is an elementary £
formula, and D[U, 0] an arbitrary £3 formula. Let E[U, V]and F[U,v] be the

L, formulas obtained from C[U, V] and D[U, v], respectively, by substituting
(t € W;) for each subformula Py, (t), i = 0,...,n. In view of the induction
hypothesis ATRy proves

(*) Vv ((/\(&[ AAW, € Z)NU € Z AM[Z ]) %(VXéZ)E[(j,X]),
=0
and we have to show in ATR, that

((/\(31[ IAW, € Z)NU € Z AMZ ]) — BlU {x: DZ[U,x]}]>.

=0

Working within ATR,, pick a Z such that

/n\(&-[Wi] ANW,EZ)NTEZ N MZ.

=0
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By Theorem [10] there exists an Yj for which

AGIW] AW, €Yy) AT EY, A ZEYy A MYy).

i=0
Hence {z : DZ[U, z]} is a set in Yy, i.e., there exists an X, with
Xo €Yy A Va(a € Xy < D?[U,a)).

Now we go back to (ED, and obtain (by inserting Yy for Z and X, for X) that
E[U, Xy], hence E[U,{x : D?[U, x|}]. This is what we had to show. O

Theorem 12. Let A[U] be an arithmetic formula of Lo with no set variables
besides U. Then we have that

$1DCY+ (SUB®)  VXA[X] = ATRy+ (LFP) F VXA[X].

Proof. From our assumption we obtain that there exists a natural number n
and a proof of A[U] in ¥1-DC{ 4 (SUB®) such that all formulas in this proof
belong to For(n). We choose fresh set variables W, ..., W,, not occurring in
this proof and see by the previous lemma that ATR, proves

vz((;\(gi[wi] AW, € ZYAU € Z A 932[2]) = A[U]),
hence also

n

31X, ... HXnHZ</\(&-[Xi] ANX, EZ)VAU € ZA mt[Z]) — AU

i=0
In view of the schema (LFP) and Theorem [10] this means that A[U] is provable
in ATR, + (LFP). Consequently, ATRy + (LFP) proves VX A[X]. O

Corollary 13. Let A[U] be an arithmetic formula of Lo with no set variables
besides U. Then we have that

¥1-DCS + (SUB®) F VXA[X] == ATR}  VXA[X].

Let us conclude this section with some remarks on the anonymous relation
symbol R. Clearly, in the context of £, and L3 it plays the same role as
any unspecified free set variable and would have been superfluous. More
specifically: if T" is one of the Lo or L3 theories considered so far, then T’
proves A if and only if it proves VX Ar[X], where Ag[U] is obtained from A
by replacing all occurrences of R(t) by (¢ € U).
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In the next sections we shall turn to several first order theories, and then
it is convenient to work within a syntax that provides for a place holder
for arbitrary non-specified properties. A typical example is the first order
definition of the proof-theoretic ordinal of a theory. For any primitive recursive
relation < we set

TI<,R] = Vz(Vy(y<z — R(y)) = R(z)) — VzR(x).

Then if T is a theory formulated in a language containing the first order
part of Lo, the ordinal « is called provable in T if and only if there exists a
primitive recursive well ordering < of order type « such that T proves T1[<, R].
The proof-theoretic ordinal |T| of T is defined to be the least ordinal not
provable in T

Furthermore, it is more or less obvious that in the presence of (SUB®) the
following variant of the substitution rule is available. It will be needed for
interpreting the substitution rule of the unfolding of ID;, described in the
next section.

Lemma 14. Let A be an elementary L3 formula and Blu] an arbitrary L3
formula. If 31-DCS + (SUB®) proves A, then %}-DC§ + (SUB®) also proves
Arl{a : Blal}], where Ar[{a : Bla]}] here indicates the result of substituting
Blt] for each occurrence of R(t) in A.

4 Unfolding of ID;

In this section we define the unfolding of ID; as in Buchholtz [5]. This is an
instance of Feferman’s unfolding program [13], for a general exposition, see
also Buchholtz [5]. This is defined in two steps; first the operational unfolding
Up(IDy) is introduced, and then the full unfolding U(ID;) is defined as an
extension.

Let L] denote the fragment of £5 without free or bound set variables (and
thus also without the € relation). We use here a version of the unfolding in
which the operational structure is given by a partial combinatory algebra.
The language of Uy(ID;) is the language L] extended with new constants k
and s (combinators), p, pp and p; (pairing and projection), d (definition by
cases), tt (true) and ff (false), e (equality), and the binary function symbol -
(application). Terms are built in the usual way using variables and constants
and closing under application and the function symbols of £3. Further, we add
a unary relation symbol N (natural numbers), and to account for partiality of
application we also add a unary relation symbol | (defined; expressing that a
term has a value). When writing terms we drop the symbol for application and
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use the convention that application is left-associative to leave out parentheses.
We often write f(ay,...,a,) for fa;...a, and {a,b) for pab.

For Uy(ID;) we use Beeson’s Logic of Partial Terms with strictness and
equality, see Beeson [4]. The non-logical axioms of Uy(ID;) are:

1. The usual axioms of arithmetic, relativized to N, with the schematic
form of complete induction on the natural numbers,

R(0) AVz(N(z) AR(z) = R(2")) — Vz(N(z) = R(z)).

2. The least fixed point axioms for each Py in schematic form relativized
to NJ
Va(N(a) A AN[ Py, a] — Py(a)),
(Va(N(a) AAV[R, a] — R(a)) — Ya(N(a) A Py(a) = R(a))).

3. Partial combinatory algebra (PCA) axioms with pairing and definition
by cases:

(a) kab=a.
(b) sabl Asabec~ac(be).

)
)
(¢) pofa,b) = aApifa,b) =0.
(d) dabtt=aAdabff =b.

4. Decidable equality on natural numbers:
(a) Vz,y(N(x) AN(y) > exy =ttVexy = ff).
(b) Vx,y(N(x) AN(y) = (exy =tt > x =v)).
In addition, Uy(ID;) includes the unrestricted substitution rule,

A
Ar[{a : Blal}]

where, because of partiality, Ar[{a : B[a|}] indicates the result of substituting
(r} A B[r]) for each occurrence of R(r) in A.

Abstraction terms Az.t can be defined as usual, and from the PCA axioms
we can show in Uy(IDy):

(SUB)

L (Azt) A (Axt)x ~t

3As usual, AN denotes the formula 2 with all quantifiers relativized to N.
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2. s{ = (A\z.t) s ~ t[s/x]

Here, t ~ s is an abbreviation for t| V s] — t = s. Note that we use the
notation of the A-calculus even though the conversion relation is not exactly
the same (in particular, it does not validate the (§)-rule of the A-calculus).

The PCA axioms allow us to introduce a fixed point operator, but we
cannot prove that it produces least fixed points.

Theorem 15 (Fixed point). There is a closed term fix of Uy(IDy) such that

Up(IDy) - fix FL A fix f 2 = f (fix f) @

The language of the full unfolding ¢(ID;) extends the language by addi-
tional constants to reflect the predicates of Uy(ID;): nat (natural number), iy
(inductive set), eq (equality), prg (anonymous relation symbol R), inv (inverse
image), conj (conjunction), neg (negation), un (universal quantification over
the natural numbers), join (join, that is, disjoint union). In addition, we add
the unary relation symbol II (predicates) and the binary relation symbol €
(predication). The axioms of U(ID;) extend the ones of Uy(ID;) by

4. Basic axioms about predicates:

(a) II(nat) A Vz(z € nat <> N(z)).

(b) (i) A Va(z € iy +> Py(x)).

(c) II(eq) AVa(z € eq > Jy(x = (y,y)))-

(d) I(prg) AVa(z € prg <> R(x)).

(e) II(a) — II(inv(a, f)) AVz(z € inv(a, f) < fz € a).

(f) (a) ANII(b) — II(conj(a,b)) A Va(z € conj(a,b) <> x € a Nz €D).
(g) I(a) — II(nega) A Vz(x € neg(a) <» —(x € a)).

(h) II(a) — (una) AVz(x € un(a) <> Vy(N(y) — (z,y) € a)).

5. The dependent join axiom:

II(a) A (Vy € a)II(fy) — T(join(f,a))
AVz(x € join(f,a) <> Jy,z(x = (y,2) Ay €anze f(y)).

Finally, 4 (ID) contains the restricted substitution rule
A
Ar[{a: Bld]}]
where A is any formula in the language of Uy(ID;) and B is any formula in

the language of U(ID;) (with the same convention as for the substitution rule

for Uy(IDy)).

(SUB)
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5 Lower proof-theoretic bound

We define an interpretation of U(ID;) into X{-AC§ + (SUB®) in which we
interpret the operational constants using indices of partial recursive functions.
The predicates are then interpreted via a fixed point of an elementary positive
operator form A[QT, x,y, z] where () is a new ternary relation symbol. For
the interpretation we need only consider a particular proof in #(ID;), and
since such a proof refers only to finitely many of the least fixed points Py
we can for simplicity (and because there is a universal such case), assume
that A refers to a single inductive predicate Py (which we fix throughout this
section).

The fixed point Q4[z,y, 2] of A[QT, z,y, 2] is obtained in X}-AC{ using,
as usual, Aczel’s trick (cf. Feferman [12]). In particular, we can consider
the class C of formulas 3X A[X, 7], where A is an elementary formula with
the same restrictions as for the operator A. There is a quinary C formula
Elz,x1, x5, x3, x4] that enumerates the quaternary C formulas. Using diag-
onalization we can then obtain a ternary C formula P4 that is our desired
fixed point of the operator A. We record this as a lemma.

Lemma 16. There is a C formula Q [z, y, z] such that ¥1-ACS proves

V%?J,Z(AQ[QA%?J: Z] A QA[ZL',y,ZD

where Ag[Qa,x,y, 2] denotes the formula obtained from A[QT,z,y,z] by
replacing each occurrence of Q(s,t,u) with Q4[s,t,u].

The operational unfolding U (ID;) is interpreted in the usual way using
its model in the partial recursive functions. See for example Feferman and
Strahm [I5]. In particular, a b is interpreted as {a}(b) in the sense of ordinary
recursion theory.

In order to interpret predicates we need codes of the following forms:

Predicate  Code

nat (0,0)
eq (1,0)
ig( (2,0)
Prs <37 0>
neg(a)  (4,q)
un(a) (5,a)

conj(a,b) (6,a,b)
inv(a, f) (7,
join(f,a) (8,
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Thus, for example, the constant neg is interpreted as the index neg for a
partial recursive function such that {neg}(a) = (4, a).

We use the ternary fixed point Q 4[x,y, z] with following informal inter-
pretation:

Qaz,0,0] z is a predicate
QA[I', Y, 1] yerx
Q.A[x7 Y, 2] Yy ¢ T

The operator form A[Q, a,b, ] is now defined to be the disjunction of the
following 26 clauses:

b=0Ac=0,
Adz(b= (x,x)) Nc=1,
AVz (b # (x,x)) N c= 2,
Ab=0Ac=0,

/\Pgl(b)/\c:l,

Ab=0ANc=0,
10. a =

,0)
)
)N
)
)
)
)
8. a=(2,0) AN=Py(b) N c=2,
)
)
11. a = (3,0)
4
4
4

12. Jz(a = (4,2) ANQ(x,0,0)) Ab=0Ac=0

13. Jz(a = (4,2) A Q(x,0,0) A Q(z,b,2)) Ac=1,

14. Ja(a = (4,2) A Q(z,0,0) A Q(z,b, 1)) Ac =2,

15. Jz(a = 5,2) AQ(2,0,0) Ab=0Ac=0

16. Jz(a = (5,2) A Q(z,0,0) AVyQ(z, (byy),1) Aec =1,
17. Jz(a = (5,2) A Q(z,0,0) A FyQ(z, (b,y),2) Ac =2,

18. Iz, y(a = (6,2,y) A Q(x,0,0) AQ(y,0,0)) Ab=0Ac=0,

17



19. 3z, y(a = (6,2, y) ANQ(x,0,0) AQ(y,0,0) AQ(x,b, 1) AQ(y,b, 1)) Ac = 1.

20. Jz,y(a = (6,2, y) ANQ(x,0,0)AQ(y,0,0)A(Q(z,b,2)VQ(y,b,2))) Ac = 2.

(
(
21. 3z, fla= (7,2, f) NQ(2,0,0)) Ab=0Ac=0,
22. 3, fla= (7,2, f) NQ(x,0,0) AQ(z, {f}(), 1)) Ae =1,
23. 3, fla= (7,2, ) NQ(z,0,0) A ({F})TV Q(z, {£}(b), 2)) Ae =2,
24. 3f,x(a= (8, f,2) AQ(x,0,0) AVy(Q(z,y,2) vV Q({[}(y),0,0)))
Ab=0Ac=0,

25. 3f x(a= (8, f,2) NQ(x,0,0) AVy(Q(z,y,2) vV Q({f}(y),0,0))
A Ju,v(b = (u,v) AN Q(z,u, 1) NQH{ f}(u),v,1)) ANe =1,

26. 3f,x(a = (8, f,2) AQ(x,0,0) ANVy(Q(z,y,2) V Q({f}(y),0,0))
AYu,v(b # (u,v) V Q(z,u,2) VQH fHu),v,2)) Ae=2.

We can now define

H(.T) = QA[J:707O] /\vy(QA[Iaya 2] A _'Q.A[x7y7 1])7
y € x:=1(x) AN Qulz,y,1].

A similar trick was used by Feferman [I2] in order to model universes in type
theory and explicit mathematics. It is now a matter of routine to verify that
this defines an interpretation * of ¢(ID;) into 3{-ACj + (SUB®). Note that
according to this interpretation, the premise of the substitution rule translates
into an elementary formula of £3.

Theorem 17. The system U(ID;) is contained in ¥1-ACY + (SUB®) via the
translation *.

Hence, using Buchholtz [5], we get following:
Corollary 18. H(1) < [U(ID;)| < |21-ACj + (SUB®)|.

In fact, the lower bound proof in [5] can also be carried through in
A{-CAJ + (SUB®). As usual, jump hierarchies of elementary operators can be
built using A} comprehension, see for example Schiitte [25].

Theorem 19. H(1) < |A1-CA{ + (SUB®)|.

18



6 Finitely iterated fixed point theories

The aim of this section is to introduce first order theories I/D;, for all natural
numbers n > 1, and to reduce FP{ to the union of those. In the next section

we shall then carry through the ordinal analysis of the theories IE):L and thus
determine the upper proof-theoretic bound of FP{ and the systems equivalent
to FPg.

The theories If); are the analogues of the well-known fixed point theories
ID,,, see Feferman [12] or Jéger, Kahle, Setzer, and Strahm [I8], but with
ID; rather than PA as the base theory. The languages £°(n) are defined by
induction on n as follows:

(i) £°(0) is the first order part £ of the language L3.

(ii) Given L*(n — 1), we first determine the collection C(n — 1) of all
(not necessarily pure) inductive operator forms [P, u] formulated in

L*(n—1), then select a fresh unary relation symbol PQ(‘") for each AP, u]
from C(n — 1), and let £*(n) be the extension of L*(n — 1) by these
new relation symbols, i.e.,

L(n):=L(n—1)U{P" : A[P,u] € C(n—1)}.

For any natural number n > 1, the the theory If); is formulated in the
language £°(n), its logic is the usual first order predicate logic with equality.

The non-logical axioms of ID? are:

(A1) All axioms of primitive recursive arithmetic PRA plus the schema of
complete induction on the natural numbers for all formulas of £°(n).

(A2) The least fized point axioms
(1) Va(A[ Py, a] — Py(a)),
(2) Va(A[{z : Blz]},a] — Bla]) — Va(Py(a) — Bla])

for all inductive operator forms A[P,u] of £; and all formulas Blu] of

L*(n).
(A3) The fized point axioms
Va(A[PY™ a] < P{"(a))

for all natural numbers m with 1 < m < n and all inductive operator
forms A[P, u| from C(m — 1).
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L*(< w) is the union of the languages £°(n) and I/D'<w is the union of the
theories ID;,,
D2, == J{ID} : 1 <n <w}.

The following theorem is the analogue of Avigad’s reduction of FP to the
theory ID.,, of finitely iterated fixed points above PA; for details see [1].

Theorem 20. FP{ is a conservative extension of IAD’<W with respect to all
formulas of L*(0). In other words, if FPy proves the L£L*(0) formula A, then
ID2,, proves A as well.

Proof. Taking up the strategy of [I], we can establish this theorem by a
model-theoretic argument. All we have to show is that any (first order) model
of I/[\)'<w can be extended to a (second order) model of FP{ that validates the
same formulas of £°(0).

So let Ml be a model of I/[\)'<w7 write |M| for the universe of M, and denote
the M-interpretations of the relation symbols Py for least fixed points and
Pg(ln) for arbitrary fixed points by M(Py) and M(Pé[n)), respectively. Then we
define Sy; to be the collection of all these sets M(Py) and I\\/[[(Pg([n)) plus their
projections. Finally, (M, Sy) is the second order extension of M where Sy
takes care of the second order part. Clearly, we have

ME A < (MSy) [ A

for all formulas A of £°(0). It remains to show that (M, Sy) is a model of FP.
For dealing with the fixed point axioms, consider an U-positive elementary
formula A[U,Vi,..., Vi, 2, y1, ..., ys] with at most the indicated free set and
number variables. To simplify notation we assume m =n = 1. We have to
show that

(*) (M, Sr) = VXVaIYVb(b € Y < A[Y, X, b,d]).

To do so, choose an element p € [M| and a set M € Sy, given, for example,
as

M = {i € M|: (i,q) € M(PY)}

for some fixed point relation symbol Pg) and some g € |M|. Now we define
the formula €[P, u] to be

u = ((u)o, (u)1, (u)2)) A
Al{w = P((x, (u)1, (u)o))}, {z : PY ((, (u)2))}, (w)o, (u)a]-
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and observe that €[P,u] is an inductive operator form with respect to the
language L£°(k). For the set

N:={ieM]: (i,p,q) € M(P{)}
and all ¢ € |M| we thus have

i€ N < (i,p,q) € M(PF™),
= (M,Sw) E ¢[P&Y, (i, p, )],

Hence N is the required fixed point, and @ has been validated. All other
cases are straightforward or treated similarly. ]

By methods similar to those in Avigad [I], the previous theorem can also
be proved in a purely syntactic and proof-theoretic manner.

7 Upper proof-theoretic bound

To establish the upper proof-theoretic bounds on the theories If); we shall
combine methods of predicative and impredicative cut-elimination. To this
end we first extend the languages £°(n) to languages £*(n) by adding for
inductive operator form A[P, u| and each ordinal a < € a new unary relation
symbol Py®. These relation symbols are used to represent the stages of the
least fixed points Pgy. Then we restrict ourselves to the fragment of closed
L% (n) formulas A in negation-normal form and define =A by de Morgan’s
rules and the law of double negation.

We now turn to infinite calculi, and in order to measure and control the
complexities of infinite derivations we need control over the ranks and ordinal
parameters of formulas occurring in infinite derivations.

Definition 21 (Rank and parameter set).

1. The rank, rk(A), of a closed £*(n) formula A in negation-normal form
is defined inductively as follows:



(5) k(AN B) :=rk(AV B) := max{rk(A), rk(B)} + 1,
(6) rk(FxAlx]) = rk(VaAlz]) := rk(A[0]) + 1,

2. The parameter set, | A, of a closed £*°(n) formula A in negation-normal

form is defined to be the set of the ordinals v occurring in subformulas
P3e(t) in A.

Note that the definition of rank ensures that rk(A[P<?, s]) < rk(Py(s))
for 5 < a. R

Given any natural number n, we now introduce an infinitary system ID?° in
Tait-style, and use the capital Greek letters I', ©, A, possibly with subscripts,
for finite sets of closed £*(n) formulas in negation-normal form. Also, we
write (for example) I', ©, A, B for TUOU{A, B}. If I is the set {A4;,...,A,}
of closed £*°(n) formulas in negation-normal form, then |I'| := |A;|U---U|A,|
is the parameter set of I'.

Axioms of IAD:LO:
(A1) T'; A whenever A is a true atomic £4 formula.
(A2) I', =B whenever B is a false atomic £; formula.

(A3) T',—R(s),R(¢) for numerically equivalent closed terms s and t.

(A4) T, ﬂPQ([m)(s), Pélm) (t) for numerically equivalent closed terms s and t.

Basic rules of inference of ID}’:

() _LAB DA LB
T.AVB T.AAB
I, Als] I, A[s] for all closed s

J) ———— v

3 I, 3z Alx] (v) I, Ve Alz]

myy D APy 5] myy L APy, 5

(Py") — (%)’ ifm<n (=Py")— (m)’ ifm<n

0, P{(s) D =Py (s)

Closure rules of If)n’oz

F7 Q[[lea S]

(Cl-Py) T, Pals)
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Ordinal rules of inference of I/D:Lo:

T, AP s] I, —A[Py¢, s for all £ < a
P<o¢ ) A if _|P<oz ) A
( A ) F, P§a<8) 1 6 <« ( A ) F,_\PQTC%S)
T, AP;", 5] I, —2A[Py¢, 5] for all £ < Q
Py) ——F2 =i 5 <Q  (=Py) — 2

Cuts of IB,’LO:

rA T,-4
T

(cut)

The formulas A and = A in the premises of (cut) are called the cut formulas
of this cut. The rank of a cut is the rank of its cut formulas.

For the ordinal assignment to proofs and the subsequent cut elimination
and collapsing we follow Buchholz [6] and make use of his approach to operator
controlled derivations.

Definition 22. Let H be a derivation operator and let I' be a finite set of
closed £*°(n) formulas in negation-normal form. Then ID°, H I% I" is defined
for all ordinals a and p by induction on a.

1.

If T is an axiom of ID* and || U {a} € H(0), then ID*, X [T for all

ordinals p.

CIf I/[\);O, H l% I'; and ag < « for every premise of a basic inference of If);o

or a cut of rank less than p and if [I'| U {a} C H () for the conclusion
' of this rule, then 1D}, H l% I.

It IADT’LO,H = T,A[Py7,s] for some o0 < 7 and 0,09 < « and if

U, P57 (s)| U{a} € H(D), then IDY, H 5T, P57 (s).

_If 1D, H[o] = T, -A[Py? s] and o, < « for all 0 < 7 and if

0, —Pg7(s)| U {a} C H(D), then ID%, H |5 T, = P57 (s).

CIf IAD;O,’H o T,A[Py7,s] for some 0 < Q and 0,09 < « and if

T, Pu(s)| U {a} C H(D), then ID%, H |5 T, Pa(s).

If ID%, H[o] |5 T,-A[P5,s] and a, < a for all ¢ < Q and if

0, ~Py(s)| U {a} C H(D), then ID, H [T, = Py(s).

CIEID®, H[o] - T, A[ Py, s] and ap+1 < v and if [T, Py(s)|U{a} C H(D),

then I/[\);O, H I% [, Py(s).
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We write IAD,’lO, H I% [’ to mean there exists an oy < a with IADn'O, HIFT.

In the remaining part of this article we describe (or sketch) how to employ
the infinitary systems for establishing the upper proof-theoretic bound of the
theories ID,,. Our main reference is again Buchholz [6] where an analogous
analysis has been carried out in full details for a theory that is similar to (or
even more complicated than) our systems as far as impredicative methods
of proof theory are concerned. We state the main results and believe that it
should not be too complicated for the reader to fill in the missing details.

First observe that the infinitary systems ID;° have the property that all
instances of complete induction on the natural numbers and all instances of
least fixed point induction are provable, in particular by making use of the
infinitary rules (V) and (—Py). However, the price is that we have to deal
with complex derivations of infinitary depths. As a consequence we obtain a
canonical embedding theorem.

Theorem 23 (Embedding). Let A be a closed L*(n) formula A in negation-
normal form. If 1D} = A, then there ezists a natural number k such that for
all derivation operators H,

<€qQ+1

arr A

D%, |

Now we move on to cut elimination. It is easy to convince oneself that the
axioms and rules of inference of the infinitary systems ID?° and the definitions
of the ranks of closed £*(n) formulas in negation-normal form are so that cuts

of ranks greater than {2 can be eliminated without any problems. As usual,
wo(a) := a and wyy; (@) := w** for all ordinals & and natural numbers k.

Lemma 24 (Partial cut elimination). If T" is a finite set of closed L*(n)
formulas in negation-normal form, then we have for all derivation operators
H, all ordinals o, and all natural numbers k:

™ a ™ wi (@)
Dy, H o L — ID:LO,?'-lI—Q+1 I.

The next step is to eliminate the fixed points Pg([m). To achieve this, we can
make use of standard elimination procedures for finitely many fixed points by
asymmetric interpretations as, for example, in Cantini [9], Jager and Strahm
[19], or Marzetta and Strahm [21].

Lemma 25 (Elimination of fixed points). If I' is a finite set of closed L*(n)
formulas in negation-normal form, then we have for all derivation operators
H and all ordinals o:

s <« 00 <pal
D Hgs T = IO Higa I
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Cut formulas of rank less than €2 are eliminated by methods of predicative
cut elimination as presented in Schiitte [25]; for all details concerning pred-
icative cut elimination in the presence of derivation functions see Buchholz

[6].

Lemma 26 (Predicative cut elimination). If T is a finite set of closed L£*°(0)
formulas in negation-normal form, then we have for all derivation operators
H, all ordinals «, and all ordinals 8 and p with 3,p < and p € H(D):

Dy Hitm T = IDF H[FT

So it only remains to deal with cut formulas of the form Py(t) and —Py(t),
and here the boundedness and collapsing techniques enter the picture. Let
POS be the collection of all closed £*(0) formulas in negation-normal form
that do not contain subformulas of the form —Py(t); i.e., POS is the collection
of all closed £*°(0) formulas in negation-normal form that are positive in
the least fixed point relations Py. In addition, if A belongs to POS and «
is an ordinal less than €, then A(<® is the formula obtained from A if all
occurrences of Py(t) are replaced by Py®(t). For the proof of this boundedness
and collapsing lemma consult again Buchholz [6].

Lemma 27 (Boundedness and Collapsing).

1. For all finite sets T of closed L£*(n) formulas in negation-normal form,
all and elements A of POS, all derivation operators H, and all ordinals

a, 3, p such that « < 8 < Q and § € H(D) we have:
DEHIET, A — IDFHIET, AP,

2. Suppose that T’ is a finite subset of POS and o an ordinal such that
IT'| € C(o + 1L,¢(c + 1)) and o € H,[|T'|](D). Then we have for all
ordinals o and = o 4+ Wt

~ o N ~ o vB
DY, HoIT] |55 T = D&, M| o5 T

Combining Theorem [23| with the series of Lemmas [24] to [27] and carrying
through some ordinal calculations, we obtain complete cut elimination for the
closed L£; formulas provable in one of the theories ID,,.

Theorem 28 (Complete cut elimination). Let A be a closed formula of the

language Ly and suppose that A is provable in IADn for some natural number
n > 1. Then there exist a derivation operator H and an ordinal o < (Ia4q)
such that ID§°, H I% A,
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By standard proof theory this result immediately gives us the upper bound
result for the theory ID2 : If ID2 , proves T7[«, R] for some primitive recursive
well ordering <, then there exists a natural number n large enough such that
ID,, proves T1[<,R]. In view of the previous theorem this implies

DS, H | TI[<,R]

for some derivation operator H and some ordinal o < (I'g41). Finally, as
shown in Schiitte [25], we can conclude that the depth of a cut free derivation
of TI[«,R] essentially bounds the order type of this well ordering.

Corollary 29. ]I/D;w] < Y(Cay1).

It only remains to see this upper bound result in the context of Theorem [}
Corollary [I3] Theorem [I7], Corollary [1§ and Theorem [20]in order to conclude
the ordinal analysis of the main theories of this article.

Corollary 30 (Proof-theoretic ordinal).
Y(Tos1) = ¥(Tap) = D%, = |[FP)| = |ATRY)|
— |21-DCS 4 (SUB®)| = |£1-ACS + (SUB®)| = |14(IDy)].

8 Discussion

We have identified several systems in classical logic of strength ¢)(T'qyq) (cf.
Corollary . Our results are a parallel to those characterizing classical
systems of strength Ty,

To = |IDeyw| = |[FPo| = |ATRy|
= |Z1-DCy + (SUB)| = |S1-ACo + (SUB)| = [U/(NFA)|.

(See Feferman [12] for ID,,, Avigad [I] for FPy, Simpson [26] for the subsystems
of second order arithmetic, and Feferman and Strahm [I5] for Z/(NFA).)

A companion article in preparation shall establish similar results for
constructive systems. In particular, we shall verify the conjecture of Hancock
[16] by studying a predicative type theory in the style of Martin-Lof [20] (i.e.,
a dependent type theory with an externally indexed hierarchy of predicative
universes (U, ),<,) extended with a single well-ordering type (belonging to
all universes) corresponding to the constructive tree ordinals (a type Ord
with constructors zero of type Ord, successor of type Ord — Ord and limit
of type (Nat — Ord) — Ord). This will parallel the result of Feferman [12]
that the strength of the predicative type theory itself is I'g. Also of interest is
an analogous system of explicit mathematics, similarly containing a hierarchy
of universes (as in Feferman [12]) and a type of constructive tree ordinals.
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