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Homotopical mathematics

I am pretty strongly convinced that there is an ongoing
reversal in the collective consciousness of mathemati-
cians: the right hemispherical and homotopical picture
of the world becomes the basic intuition, and if you
want to get a discrete set, then you pass to the set of
connected components of a space defined only up to
homotopy. Yuri Manin 2009 [Gel09]

“ " . . Denis Mi , CC BY-NC-ND
Work “up to homotopy" — unique existence becomes (Denis Mironov )

contractibility. For example: " . .
Y P The “dunce hat” is contractible

® Spectral algebraic geometry — proofs of: but not collapsible:
® Milnor and Bloch—Kato conjectures by Rost &
Voevodsky [Wei09]
® Weibel conjecture [KST18]
® Geometric Langlands by Gaitsgory et al. [Ari+24]

e Quantum field theory (higher gauge theory,

Chern-Simons, ...)
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Homotopy type theory adds to Martin-L6f type theory

Z7H7:707+7Nau’i7"'

Voevodsky's univalence axiom

and homotopical generalizations of inductive types (pushouts,

isEquiv(A =y B — A ~

truncations, initial algebras, localizations, . ..

Implementation of Univalent Foundations whose key feature is:

Univalence Principle

B)

)

Equivalent mathematical structures are indistinguishable.

AKA equivalence/structure identity principle — Makkai, Aczel,

Awodey, ... [Ahr425; Awol8]
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(Renate Schmid, CC BY-SA)
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Metatheory of HoTT, classically

Theorem (Voevodsky [KL21])

HoTT can be modeled using the Kan—Quillen
model structure on simplicial sets with type
families interpreted as Kan fibrations.

This model is the “standard model”
generalizing the set theoretic model of MLTT —
validates LEM, AC, Whitehead's principle,

(IIn : N.7m, (X) =0) - X =1,

sets cover, and any set theoretic principles of
the metatheory.

Theorem (Shulman [Shul9])

Every Grothendieck (oo, 1)-topos admits a
presentation by type theoretic model topos,
which interprets HoTT.

Classical metatheory: these models validates
impredicative reasoning via propositional
resizing,

isEquiv(Prop, < Prop;)

where Prop, := XX : U T, 2’ : X.ow=x o is
the type of propositions in ;.
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Metatheory of HoTT, constructively

Theorem (Sattler [Sat25])

In predicative constructive set theory, we can build a model of HoTT using a uniform Kan
model structure on cubical sets that is Quillen equivalent to the Kan model structure on
semisimplicial sets.

Builds on line of work on cubical models of type theory by Coquand et al. [BCH14; Coh+18]
that give normalizing cubical type theories. This model validates:

Pointwise Principle
A family of propositions has a section if it has one on points.

Get dependent choice, presentation axiom, ..., but not propositional resizing.

Earlier versions already established that the consistency strength of predicative HoTT mirrors
MLTT - from ATR, to KPM [Rat17] depending on the availability of inductive types.

Expected to lead to constructive models in higher toposes, realizability models, etc.!
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Mathematics in HoTT

Quite a lot of mathematics has be developed in
HoTT [Unil3], often formalized using computer
proof assistants such as Agda, Rocq, Lean.
® Basically all “truncated” mathematics (at
the level of sets, groupoids, 2-groupoids,
.., perhaps with appropriate axioms)
® Basic results about arbitrary types, e.g.,
idempotent modalities [RSS20],
Blakers—Massey [Hou+16; Ane-+20], path
spaces of pushout [War24]

® Theory of higher groups [BDR18; BR23]

e Cellular (co)homology, spectral sequences,

But! We don’t know how to define higher
monoids, categories, ...— it's an open problem:

Coherence problem

Can HoTT develop the theory of

(00, 1)-categories capturing the higher category
structure on each I/; with functions as
morphisms?

Equivalently, can we internalize (abstract) the
external sequence of truncated semisimplicial
types
op
Fun(AZ,.U;)

as a family S : N — U;17?
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Simplicial type theory

Riehl-Shulman [RS17] introduced simplicial type theory. The idea I
is to interpret (homotopy) type theory in simplicial objects s€ of a o >e
model of HoTT £. Here we have the simplices A", generated
from an interval type I (totally ordered with 0 # 1). A2 < A?
Using I, we get the type of arrows in any type, X', and we get DN
functoriality for free by composition: T — X — V. Y

)
Definition X is Segal if X»* — X! is an equivalence. °
Definition A Segal type X is Rezk if X — X is an equivalence, E
for [E the "walking equivalence”. .
These model homotopical categories: In the model they \/\
corresponding to (0o, 1)-categories in £. ,,/ \

Definition Functions f : C'— D and g : D — C' are adjoint when
equipped with ¢ : Ile, d. hom(f(c),d) ~ hom(ec, g(d)).
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Further developments in simplicial type theory

The basic setup suffices for many purposes: A covariant family:
e Fibered category theory [BW23]
® (co)limits and exponentiable functors, Bardomiano
Martinez [Bar22; Bar24a]
® Prototype proof assistant RZK with formalization of
the fibrational Yoneda lemma [Kud23; KRW04]: For
a covariant family C': A — U over a Segal type A, J
evaluation at a : A is an equivalence:

(Ilz. hom(a, &) — C(z)) —+ C(a)

But it doesn't provide examples, most notably the
category of spaces S.
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Directed univalence and the Yoneda embedding
In recent work with Daniel Gratzer and Jonathan Weinberger [GWB24;

GWB25], we extend simplicial type theory to solve this: Construct the
category of spaces S and the Yoneda embedding v : C' — C.

The required extensions are:
® Modalities: core groupoid b, opposite category op, and amazing right
adjoint (—); (for constructing S) and twisted arrow category tw (for
constructing ).
® Cubes separate: A map [ :, A — B is an equivalence if it induces
equivalences on (v | 1" — A) — (b |I" — B)
® Duality axiom (see below)
From S, we get category of higher algebras, e.g., higher monoids Mon with
directed univalence principles: the arrows in Mon are homomorphisms.

From b we can state and derive pointwise principles, e.g., pointwise left
adjoints are left adjoints.
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Extended simplicial type theory

To construct S we need to enlarge our topos to We want S to classify covariant fibrations,
cubical objects, c£ to ensure we have an given by a family isCov : /' — Prop.
adjunction (—)" 4 (—);. We also have a string

of adjoint functors to the base model &,

S:= 3 (isCov(Ni. A"(i)),

c€ Alhsimp
II\L%T%\LATV where Usimp is the subuniverse of simplicial
s types, i.e., the types A with

H iSEquiv(A N A’/éjngi,)
OncE wegeth=ATl"4VD =4 L
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Multimodal type theory

The need for modal type theory: We often have operations that Dual-context introduction:
don't preserve all connectives/constructions, or are not applicable

in all texts (fibered), e.g., b, (=), or:
in all contexts (fibered), e.g., b, (—)1, or AFM:A

the number of planets is 8 it is necessary that 8 =8 A;T'Fmod, (M) : (] A)
» ;

it is necessary that the number of planets = 8

With multiple modalities,

Multimodal type theory (MTT) [Gra+20] concerns a wide class of
annotate variables:

modal operators: the (dependent) right adjoints

Long history, much abridged: Doy A
® Dual-context calculi [PD01] — doesn't scale beyond one Now intro rule is hard!
modality, Delayed substitution:
® Delayed substitutions [Bd00] — no hope of decidable type
checking | NI I'EM:A

® Fitch-style [GSB19]: assumes adjunction on modalities I'Fmod, (M) : (u| A)”

themselves
10/28
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Multimodal type theory
MTT is parametrized by a mode theory M, a New intro rule for p: m —n
2-category with: ’
® objects 1 — modes L/pt M: A @m
1) : @n
® morphisms /. : m — n — modalities [ mod,, (M) : (u] 4) @n
® 2-cells a : t = v — natural maps of where T'/ju is interpreted using L, and (| A)
modalities is interpreted using F),.
A model is (can be) a 2-functor F': M — Cat This makes sense if the formation rule is:

with each F},, locally cartesian closed and such
that each F), has a left adjoint L,, 4 F),.

Theorem (Gratzer [Gra22])

If M is decidable, then MTT has normalization
and type checking is decidable.

'/t Atype Qm
Lk (u|A)type @Qn I'x:, Actx@n

11/28
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MTT: Variable and elimination rules

The variable rule comes from the counit: The elimination rule is pattern matching:
nim—n prm—n
o A/pka: AQm vin—o Dx: (u] A)F Btype Qo
L/vbkMy:(pu|A)@n
This can relaxed to build in the action of [y, AF M : Blmod,(y)/z] Qo
2-cells: let, mod,,(z) « Mo in My : B[Mp/z] @o
WV im—mn a:p=v

I'x: A/vEa®: A% Qm _ _
From these we easily derive:

And build in weakening: (1] A) 5 (] A)
coe, : (1 — (v

wim—n a : p1 = mods(I)
Lz AT Fz®: A* Qm

and
comp: (| A) = (| (v | A))
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Propositional reduct of MTT, other applications

See [KG23]: If the mode theory encodes a Other applications of MTT include guarded
comonad [J on a single mode, we get the recursion with Lob induction [Gra25]:
modal logic intuitionistic S4. We get the same
for an idempotent comonad, but they differ at
the level of proofs.

c

et % s OT
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The duality axiom

Blechschmidt introduced the following duality Here, Spec(A) := homy, (A4, Ur)
axiom [Ble23], with an eye to synthetic

. Proof idea. Follow the Kripke—Joyal
algebraic geometry:

translation. Since slicing over a stage 71" gives

Consider an algebraic (or Horn) theory T. It another classifying topos of the same form,

has a classifying 1-topos Set[T]/T ~ Set[T/T], we may assume we're at
Set[T] = [T-mods,, Set] (whose enveloping the initial model, and have a finitely presented
(00, 1)-topos is S[T] = [T-mods,, S], classifying T-model A. But for these it's easy to show

set models of T). duality by the Yoneda lemma.

Internally in Set[T], we have the universal
T-model Ur and a new theory of Up-algebras.
It validates:

Duality

For any finitely presented Urp-algebra A, the
evaluation homomorphism
A — (Spec(A) — Uy) is invertible.

14/28
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Duality and synthetic mathematics

Some applications:

® Synthetic algebraic geometry [CCH24]: T is rings,
R := Uy is modal for the topology of local rings,
and then z # 0 <> inv(z) and —(x # 0) < nilp(x).

® Synthetic Stone duality [Che+24] & light condensed
mathematics [Bar24b]: T is boolean algebras, Uy is
local for topology forcing every r : Ur either r = 0
or r = 1, duality for countably presented boolean
algebras, get Markov's principle and LLPO.

® Synthetic domain theory [PS25]
Often get local choice principles [Wil25].

NB Close relation to Kock—Lawvere
axiom for synthetic differential
geometry. But the infinitary nature of
the theory of C'°°-rings could hide a
more general axiom.

In general, the quest is for a complete
description of the non-geometric
validities in the classifying topos
Set[T] of a geometric theory T.
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Duality in simplicial type theory

For simplicial type theory, we take T to be the Generalized Phoa also holds:
theory of bounded distributive lattices and e Evaluation gives an equivalence from
I:= Ur. I" — T to Pos((0 < 1)™,T).
Again, I is modal for the topology forcing ® Evaluation gives an equivalence from
[[; (i< jVvj<i)and 0# 1 (by duality!), so A™ — T to Pos([0 < --- < n],T).
duality descends to simplicial sets, classifying
bounded total orders with distinct endpoints. Corollary

. A" is Rezk.
Lemma (Phoa principle) s e
Evaluation at 0,1 is an embedding Proof.
(I — 1) — 1 x T with image A”. A composable pair of arrows gives n maps

[0 < 1 < 2] — I, which by Phoa assemble to a

Proof. composite A% — A" O

Spec(I[z]) =1, so I[z] ~ (I — T). Any
polynomial in one variable has the normal form
p(z) = p(0) Va Ap(l). O

Finally, we use Phoa's principle to prove
directed univalence for S.

16/28
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Summary of results in modal simplicial type theory

The universe S is a category (Rezk type)
whose terms are groupoids (modally
discrete).

S classifies (amazingly) covariant families
(left fibrations).

S is closed under X2, =, and finite colimits.
S is directed univalent:

A natural transformation is invertible if it
objectwise invertible.

There is a fully faithful functor
y:C — PSh(C):=((op| C) —=S).

PSh(C) is the free cocompletion of C'.
Formula for pointwise Kan extensions.
Quillen's Theorem A: A functor

f 5 C — D is right cofinal if and only if
for all d b D, Lj((j XD D([/> = 1.

Right cofinal maps are stable under
pullback by cocartesian functors.

If C has finite and filtered colimits, then it
is cocomplete, using [SW25].

The category of spectra

Sp = lim(S, <~ S, «+ ...) is stable and
cocomplete, and the smash product is
associative, using [Lju24]
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Outlook

There's lots more to do with simplicial type
theory:

® Construct a directed univalent category of
categories.

® From this, almost all higher category
theory and higher algebra should follow.

® Think about extracting a normalizing
calculus from the constructive model.

® Feed this into the proof assistant RzK.

® Formalize in Agda, using modal extension
(Sam Toth).

® Embed simplicial type theory in other
theories, e.g., mathlib.

More speculatively:

Outlook
oe

Higher directed type theory.

The type theoretic multiverse, building on
the topos theoretic multiverse [BO23]

(cf. the set theoretic multiverse [Ham12])
— towards a modal type theory of toposes
(cf. modal logic of forcing [HL08]),
allowing us to freely move between
external and internalization.

Realizability models of HoTT. Partial work
on the effective (2, 1)-topos [AE25].

Computability for higher algebraic
structures using oracle modalities [Swa24].

Inner models of HoTT, some progress on
constructive L [MR24].

Homotopical model theory?
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