
Synthetic Homotopy Theory with HoTT/UF

Lecture notes and exercises for the

Midlands Graduate School (MGS)

8–12 April 2024, Leicester, UK

by

Ulrik Buchholtz and Mark Williams

School of Computer Science

University of Nottingham

Contents

1 Truncated and connected types 1
1.1 Motivation 1: Understanding types better 1

1.2 Motivation 2: Homotopy groups of spheres 2

1.3 Homotopical notions in type theory 4

1.4 Path algebra . 6

1.5 Homotopy groups . 7

1.6 The fundamental theorem of identity types 8

1.7 Exercises . 9

2 A menagerie of higher inductive types 11
2.1 The circle . 11

2.2 Pushouts . 12

2.3 Suspensions . 13

2.4 The three-by-three lemma and applications 14

2.5 Exercises . 16

3 The Hopf fibration and the LES 17
3.1 The fundamental group of the circle 17

3.2 Multiplying points on the circle 18

3.3 The Hopf fibration . 20

3.4 The long exact sequence . 21

3.5 Exercises . 23

4 Freudenthal and Degrees 24
4.1 Whitehead’s theorem and principle 25

4.2 Join and wedge connectivity . 26

4.3 The zigzag construction . 27

4.4 Exercises . 28

5 Outlook 29

Bibliography 30

ii

Chapter 1

Truncated and connected types

1.1 Motivation 1: Understanding types better

We assume that the reader knows the basics of Martin-Löf’s dependent type

theory (MLTT) with the usual type formers such as dependent sums (𝑎 :
𝐴) × 𝐵(𝑎), dependent products (𝑎 : 𝐴) → 𝐵(𝑎), identity types 𝑎 =𝐴 𝑏, empty

type 0, unit type 1, coproducts 𝐴 + 𝐵, natural numbers type ℕ, and universes

U . If not, good references that also go in the direction of synthetic homotopy

theory include Rĳke (2022) and Univalent Foundations Program (2013).

MLTT can be used both as a programming language and as a foundation

for mathematics. For the latter, the idea is to use the propositions as types

paradigm, according to which universal quantification ∀𝑎 : 𝐴, 𝐵(𝑎) can be

encoded as the dependent product (𝑎 : 𝐴) → 𝐵(𝑎), existential quantification

∃𝑎 : 𝐴, 𝐵(𝑎) as the dependent sum (𝑎 : 𝐴) × 𝐵(𝑎), and disjunction 𝐴 ∨ 𝐵 as the

coproduct 𝐴 + 𝐵. But this translation does not give an adequate formalization

of many mathematical concepts, as the following example illustrates.

Consider a function 𝑓 : 𝐴→ 𝐵. Intuitively, we would express the image of 𝑓
as the subtype of 𝐵 consisting of those 𝑏 : 𝐵 for which there exists 𝑎 : 𝐴 with

𝑓 (𝑎) =𝐵 𝑏. According the above translation, this becomes the type

(𝑏 : 𝐵) × (𝑎 : 𝐴) × (𝑓 (𝑎) =𝐵 𝑏)

consisting of triples (𝑏, 𝑎, 𝑝) where 𝑏 : 𝐵, 𝑎 : 𝐴 and 𝑝 : 𝑓 (𝑎) =𝐵 𝑏. Using the

principle of function extensionality (which is not provable in MLTT, but needs

to be assumed in order to capture the mathematical practice of identifying

functions 𝑓 , 𝑔 : (𝑎 : 𝐴) → 𝐵(𝑎) when we have identification ℎ(𝑎) : 𝑓 (𝑎) =𝐵(𝑎)
𝑔(𝑎) for all 𝑎 : 𝐴), it turns out (see below), that this type of triples can be

identified with the type 𝐴 via the projection to the second factor. (The inverse

maps 𝑎 : 𝐴 to the triple (𝑓 (𝑎), 𝑎, refl𝑎).)
In other words, this definition of the image is not correct. A related example

is the formalization that a function 𝑓 : 𝐴→ 𝐵 is a surjection via the proposition

∀𝑏 : 𝐵, ∃𝑎 : 𝐴, 𝑓 (𝑎) =𝐵 𝑏.

1

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 2

According to the above translation, this becomes the type

(𝑏 : 𝐵) → (𝑎 : 𝐴) × (𝑓 (𝑎) =𝐵 𝑏).

However, if we have an element 𝑠 of this type, we can compose with the first

projection to get a function 𝑔 : 𝐵→ 𝐴 such that 𝑓 (𝑔(𝑏)) =𝐵 𝑏 for all 𝑏 : 𝐵, i.e., a

section of 𝑓 . But the statement that every surjection has a section is equivalent

to the axiom of choice, and we want to be free to assume this or not, if we’re

doing constructive mathematics.

The solution to these problems became apparent with the advent of Uni-
valent Foundations: Here we realize that all types have a built-in homotopical

structure that we can probe with the identity types. For instance, mathematical

propositions are not any old types, but types 𝐴 in which any two elements can

be identified, i.e., for which we have a function 𝑝 : (𝑎, 𝑏 : 𝐴) → 𝑎 =𝐴 𝑏. And

then we need a new type former, propositional truncation, ∥_∥, that associates to

any type 𝐴 a proposition ∥𝐴∥. Then the correct definition of the image becomes

im(𝑓) := (𝑏 : 𝐵) × ∥(𝑎 : 𝐴) × (𝑓 (𝑎) =𝐵 𝑏)∥,

and the correct definition of being surjective becomes

isSurj(𝑓) := (𝑏 : 𝐵) → ∥(𝑎 : 𝐴) × (𝑓 (𝑎) =𝐵 𝑏)∥.

That is, the correct interpretation of a general existential proposition∃𝑎 : 𝐴, 𝐵(𝑎)
is the truncation of the dependent sum, ∥(𝑎 : 𝐴) × 𝐵(𝑎)∥.

Propositional truncation also solves the problem of how to express quotients

in type theory.

One motivation for studying synthetic homotopy theory is to better understand

this higher structure of types as probed by the identity types, and to understand

the identity types various types, how to exploit the higher structure in the

formalization of mathematics, and to develop tools for dealing with truncations

and its higher-dimensional cousins.

1.2 Motivation 2: Homotopy groups of spheres

The univalent foundations interpretation of type theory also suggests new type

formers, so-called higher inductive types (HITs). The most basic example is the

(homotopical) circle, which we’ll return to below. We’ll see that many HITs can

be defined in terms of pushouts. This is not too surprising, as any colimit can

be expressed via (infinite) coproducts and pushouts (or coequalizers). In type

theory, we can express pullbacks via identity types, so it’s natural to want to

have a type former for pushouts.

Using HITs built from pushouts, we suddenly have access to all the (ho-

motopical) spheres 𝑆𝑛
, along with their homotopy groups 𝜋𝑘(𝑆𝑛). These are

famous characters in a long-running story (classical analysis situs, algebraic

topology, homotopy theory). See Table 1.1 for a small sample. Mathemati-

cians have expended a lot of effort trying to understand the patterns in these

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 3

𝑘 1 2 3 4 5 6 7 8

𝑆1 ℤ 0 0 0 0 0 0 0
𝑆2 0 ℤ ℤ ℤ/2 ℤ/2 ℤ/12 ℤ/2 ℤ/2
𝑆3 0 0 ℤ ℤ/2 ℤ/2 ℤ/12 ℤ/2 ℤ/2
𝑆4 0 0 0 ℤ ℤ/2 ℤ/2 ℤ ×ℤ/12 ℤ/2 ×ℤ/2
𝑆5 0 0 0 0 ℤ ℤ/2 ℤ/2 ℤ/24

Table 1.1: Some homotopy groups of spheres, 𝜋𝑘(𝑆𝑛)

groups, and they have come up with a lot of clever tools, including long exact

sequences, homology and cohomology theories (and their operations), spectral

sequences, and higher category theory ((∞, 1)-category theory) along the way.

Many of these have been ported to type theory, although the definition of

(∞, 1)-categories has so far eluded us. (Many even think it’s impossible to

capture higher categories with the type formers mentioned so far, but this has

also not been proved.)

So a second motivation for studying synthetic homotopy theory is to

understand the tools of classical homotopy theory from the point of view of

type theory, trying to generalize them so they’re no longer tied to classical

axioms such as the axiom of choice, and to push the boundaries of what we

can express with type theory.

We shall develop enough material to understand the first row, why the next

two rows agree for 𝑘 ≥ 4, why there are zeros under the diagonal, and why

𝜋3(𝑆2) ≃ ℤ.

A note on terminology We use univalent foundations (UF) for the general

program of developing mathematics with the univalence axiom, paying close

attention to the identifications in and between various types. It is compatible

with both classical and constructive mathematics, where we view the former as

a special case of the latter where we assume the general axiom of choice (which

also implies the law of excluded middle). Homotopy type theory (HoTT) is to

be understood in analogy with set theory as studying both formal systems for

implementing UF (typically type theories), as well how to formalize mathe-

matical notions and proofs in these systems. Book HoTT is a particular choice

of formal system, corresponding to that employed in Univalent Foundations

Program (2013). Cubical type theories are newer formal systems adapted to UF

where the univalence axiom is provable from more primitive ingredients so

that they directly function as programming languages. Since the resolution of

Voevoedsky’s homotopy canonicity conjecture, book HoTT can also be used as

a programming language.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 4

1.3 Homotopical notions in type theory

We begin our journey into synthetic homotopy theory by translating the notions

of truncatedness and connectedness into type theory. We also introduce the

algebra of paths in type theory, and show how it can be used to define homotopy

groups of types.

Definition 1.1. A type 𝑋 is contractible if we have an inhabitant of the type

isContr(𝑋) := (𝑥 : 𝑋) × ((𝑦 : 𝑋) → 𝑥 =𝑋 𝑦).

A type 𝑋 is a proposition if we have an inhabitant of

isProp(𝑋) := (𝑥, 𝑦 : 𝑋) → 𝑥 =𝑋 𝑦.

Definition 1.2. A map 𝑓 : 𝑋 → 𝑌 is an equivalence if for all 𝑦 : 𝑌 we have

fib 𝑓 (𝑦) is contractible, where fib 𝑓 (𝑦) := (𝑥 : 𝑋) × (𝑓 (𝑥) =𝑌 𝑦) is the homotopy
fiber of 𝑓 at 𝑦. (Which we met above when discussing images and surjections.)

The type of equivalences from 𝑋 to 𝑌 is the dependent sum

(𝑋 ≃ 𝑌) := (𝑋 → 𝑌) × isEquiv(𝑓).

Definition 1.3. The univalence axiom states that for every universe U , the map

(𝑋 =U 𝑌) → (𝑋 ≃ 𝑌), refl𝑋 ↦→ (id𝑋 , _),

is an equivalence.

Remark 1.4. In the following we always assume univalence. It implies function

extensionality: the map

(𝑓 =(𝑥:𝑋)→𝑌(𝑥) 𝑔) →
(
(𝑥 : 𝑋) → 𝑓 (𝑥) =𝑌(𝑥) 𝑔(𝑥)

)
, refl 𝑓 ↦→ (𝑥 ↦→ refl 𝑓 (𝑥)),

from homotopies to paths is an equivalence. We shall use both freely, going

between equivalences and homotopies and the corresponding identifications.

Since function composition of 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 is written 𝑔◦ 𝑓 : 𝑋 → 𝑍,

if 𝑓 and 𝑔 are equivalences, we get paths 𝑓 : 𝑋 = 𝑌 and 𝑔 : 𝑌 = 𝑍, so we write

path composition in the same order, getting 𝑔 ◦ 𝑓 : 𝑋 = 𝑍.

Definition 1.5. We can define a stratification of types which begins with

contractible types and then propositions by recursion. For a type 𝑋 we say:

• 𝑋 is a −2-type if it is contractible.

• 𝑋 is a −1-type if it is a proposition.

• 𝑋 is an 𝑛-type if for all 𝑥, 𝑦 : 𝑋 the type 𝑥 =𝑋 𝑦 is an 𝑛 − 1 type.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 5

Remark 1.6. We call 0-types sets and 1-types groupoids. These correspond

exactly to the usual notions! This also explains the indexing, as sets are “0-

dimensional” objects. But it’s also natural to use an indexing where contractible

types are at level 0: This hierarchy is called the h-level (homotopy level)

hierarchy, so a type is of hlevel 𝑛 + 2 if and only if it is an 𝑛-type.

Example 1.7. We give some basic examples of 𝑛-types.

• The only −2-type is the unit type 1. More precisely, the type of −2-types

is contractible.

• −1-types are subtypes of 1. For example the empty type 0.

• The type of integers ℤ is a 0-type. More generally any (non higher)

inductive type is a 0-type.

• The type of 𝑛-types in a universe U , U≤𝑛 , is an 𝑛 + 1 type, for 𝑛 ≥ −1.

Definition 1.8. There is a truncation operation for each 𝑛 which takes a type 𝑋
to an 𝑛-type version of itself in a natural way. We do not define it here, however

we present its universal property, which is all that’s needed to work with it.

Given a type 𝑋, its 𝑛-truncation is a type ∥𝑋∥𝑛 . It comes with a map

|_|𝑛 : 𝑋 → ∥𝑋∥𝑛 such that for any 𝑛-type 𝑌, and any map 𝑋 → 𝑌, there is a

unique map ∥𝑋∥𝑛 → 𝑌 so that

𝑋 𝑌

∥𝑋∥𝑛

|_|𝑛

commutes. Equivalently, the map _ ◦ |_|𝑛 : (∥𝑋∥𝑛 → 𝑌) → (𝑋 → 𝑌) is an

equivalence.

Further we have an induction principle, which similarly characterizes

dependent functions into a family of 𝑛-types.

The case of −1-truncation, otherwise known as propositional truncation,

holds an important role in logic as well as in homotopy theory. We think of

∥𝑋∥−1 as the proposition asking whether 𝑋 is inhabited. Due to its importance

we will often denote −1-truncation without the subscript, ∥𝑋∥.
The case of 0-truncation, a.k.a. set truncation, also corresponds to a common

operation on spaces: The set ∥𝑋∥0 is the set of path components of 𝑋.

Definition 1.9. A type 𝑋 is 𝑛-connected if ∥𝑋∥𝑛 is contractible.

As special cases, we say that 𝑋 is inhabited (constructively nonempty) if it’s

−1-connected, and connected if it’s 0-connected. Every type is −2-connected,

since ∥𝑋∥−2 is automatically contractible.

We have a corresponding notion of connectedness and truncatedness for

maps defined fiberwise.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 6

Definition 1.10. A map 𝑓 : 𝑋 → 𝑌 is:

1. 𝑛-truncated if for all 𝑦 : 𝑌, the type fib 𝑓 (𝑦) is an 𝑛-type.

2. 𝑛-connected if for all 𝑦 : 𝑌, the type fib 𝑓 (𝑦) is 𝑛-connected.

As special cases, a map 𝑓 : 𝑋 → 𝑌 is surjective if it’s −1-connected and

an embedding if it’s −1-truncated. For reasons we’ll see later, we think of

0-truncated maps as set bundles.

Example 1.11. The map |_|𝑛 : 𝑋 → ∥𝑋∥𝑛 is 𝑛-connected.

1.4 Path algebra

Paths are the “morphism” part of the groupoid structure of types. We can

concatenate paths together when the endpoints agree, we can invert paths, and

we have an identity path.

Definition 1.12. Given 𝑝 : 𝑥 = 𝑦 and 𝑞 : 𝑦 = 𝑧 in a type 𝑋, we define their

concatenation 𝑝𝑞 · 𝑝 : 𝑥 = 𝑧 by path induction:

𝑞 · refl𝑥 := 𝑞

We can also define 𝑝−1 : 𝑦 = 𝑥 by path induction:

(refl𝑥)−1 := refl𝑥

These operations satisfy groupoid laws up to higher paths:

Lemma 1.13. For any 𝑝 : 𝑥 = 𝑦, 𝑞 : 𝑦 = 𝑧 and 𝑟 : 𝑧 = 𝑤 we have terms of the
following types:

• (𝑟 · 𝑞) · 𝑝 = 𝑟 · (𝑞 · 𝑝),

• 𝑝 · 𝑝−1 = refl𝑦 and 𝑝−1 · 𝑝 = refl𝑥 ,

• 𝑝 · refl𝑥 = 𝑝 and refl𝑦 · 𝑝 = 𝑝.

Proof. All by path induction, and the definition of composition. □

Furthermore, every function forms a (higher) groupoid homomorphism.

Definition 1.14. Given 𝑓 : 𝑋 → 𝑌 and 𝑥0 , 𝑥1 : 𝑋 we obtain a map

ap 𝑓 : 𝑥0 =𝑋 𝑥1 → 𝑓 (𝑥0) =𝑌 𝑓 (𝑥1)
ap 𝑓 (refl𝑥0) := refl 𝑓 (𝑥0)

by path induction.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 7

This satisfies standard functoriality laws, again up to higher paths. We’ve

set it up so that definitionally the identity path is mapped to the other identity

path.

Lemma 1.15. Given 𝑓 : 𝑋 → 𝑌 and 𝑝 : 𝑥0 = 𝑥1, 𝑞 : 𝑥1 = 𝑥2 we have a term of type

ap 𝑓 (𝑞 · 𝑝) = ap 𝑓 (𝑞) · ap 𝑓 (𝑝)

Proof. By path induction. □

1.5 Homotopy groups

We now work towards defining the homotopy groups of a type.

Definition 1.16. A pointed type is a pair (𝑋, 𝑥0)where 𝑋 : U and 𝑥0 : 𝑋. The

collection of pointed types is U• := (𝑋 : U) × (𝑋).
A morphism between two pointed types (𝑋, 𝑥0) and (𝑌, 𝑦0) is a pair (𝑓 , 𝑝)

consisting of a map 𝑓 : 𝑋 → 𝑌 and a path 𝑝 : 𝑓 (𝑥0) = 𝑦0. We denote the type

of pointed maps as (𝑋, 𝑥0) →∗ (𝑌, 𝑦0)

Definition 1.17. We have the loop space operation Ω : U• → U• defined by

Ω(𝑋, 𝑥0) := (𝑥0 =𝑋 𝑥0 , refl𝑥0)

We will often be imprecise when writing pointed types and loop spaces,

dropping the notation of the point when it is clear. In fact when a type is

connected the choice of basepoint doesn’t matter (up to mere equivalence), see

the exercises.

The loop space is the fundamental structure which will allow us to define

homotopy groups. First note that the loop space is already “group-like”. Using

path concatenation we get an operation _ · _ : Ω(𝑋, 𝑥0) → Ω(𝑋, 𝑥0) → Ω(𝑋, 𝑥0).
This satisfies the usual group laws: path composition is associative, has unit

refl𝑥 and for each element 𝑝, it’s inverse is 𝑝−1
. The only thing that is preventing

this from being a group is that it isn’t a set! These group laws only hold up to

homotopy. For instance there might be more than one element of 𝑝 · 𝑝−1 = refl𝑥0 .

To solve this we set truncate everything to end up with an ordinary group.

Definition 1.18. The first homotopy group, traditionally called the fundamen-
tal group, of a pointed type (𝑋, 𝑥0) is

𝜋1(𝑋, 𝑥0) := ∥Ω(𝑋, 𝑥0)∥0

By set truncating we collapsed all of the higher loops of our type. The

higher homotopy groups are introduced to keep track of this higher homotopy

information.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 8

Definition 1.19. The 𝑛th
loop space of (𝑋, 𝑥0) is defined by recursion:

Ω0(𝑋, 𝑥0) := (𝑋, 𝑥0)
Ω𝑛+1(𝑋, 𝑥0) := Ω(Ω𝑛(𝑋, 𝑥0))

The 𝑛th
homotopy group of (𝑋, 𝑥0) is then:

𝜋𝑛(𝑋, 𝑥0) := ∥Ω𝑛(𝑋, 𝑥0)∥0

Note all these operations are functorial: Given a pointed map (𝑓 , 𝑞) :
(𝑋, 𝑥0) →• (𝑌, 𝑦0)we get a map

Ω 𝑓 : Ω(𝑋, 𝑥0) →• Ω(𝑌, 𝑦0)
(Ω 𝑓)(𝑝) := 𝑞 · ap 𝑓 (𝑝) · 𝑞−1

which descends to a group homomorphism 𝜋𝑛(𝑋, 𝑥0) → 𝜋𝑛(𝑌, 𝑦0) for each 𝑛
by truncation.

1.6 The fundamental theorem of identity types

Doing homotopy theory in HoTT is all about identity types, and so we need

a good generic way to understand them. A fundamental property of identity

types is that given a fixed basepoint 𝑥 : 𝑋 the type (𝑦 : 𝑋) × (𝑥 =𝑋 𝑦) is

contractible onto (𝑥, refl𝑥). This is clear by path induction.

Even though this might seem like a trivial property, it is in fact a defining

property, which the fundamental theorem makes clear.

Theorem 1.20 (The Fundamental Theorem of Identity Types). Let (𝑋, 𝑥0)
be a pointed type and 𝑌 : 𝑋 → U a type family. Suppose we have a function
𝑓𝑥 : 𝑥0 =𝑋 𝑥 → 𝑌(𝑥) for all 𝑥 : 𝑋. Then the following are equivalent:

1. 𝑓 is a family of equivalences.

2. The total space (𝑥 : 𝑋) × 𝑌(𝑥) is contractible.

As an example, let us characterize the identity types of dependent sums. If

𝑌 : 𝑋 → U is a type family over 𝑋 with a fixed element (𝑥0 , 𝑦0) : (𝑥 : 𝑋) × 𝑌(𝑥)
of the type space, define 𝑃 :

(
(𝑥 : 𝑋) × 𝑌(𝑥)

)
→ U by

(1.1) 𝑃(𝑥, 𝑦) := (𝑝 : 𝑥0 =𝑋 𝑥) × (𝑝∗𝑦0 =𝑌(𝑥) 𝑦).

We can show that the total space is contractible by twice contracting a singleton:

(𝑥 : 𝑋) × (𝑦 : 𝑌(𝑥)) × 𝑃(𝑥, 𝑦)
≃ (𝑥 : 𝑋) × (𝑦 : 𝑌(𝑥)) × (𝑝 : 𝑥0 =𝑋 𝑥) × (𝑝∗𝑦0 =𝑌(𝑥) 𝑦)
≃ (𝑦 : 𝑌(𝑥0)) × (refl𝑥0∗𝑦0 = 𝑦) ≃ 1

This in turn can be used to establish the following important characterization

of type families, sometimes known as straightening–unstraightening.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 9

Theorem 1.21. For any small type 𝑋 : U , forming the dependent sum along with the
first projection gives an equivalence:

(𝑋 → U) ≃
(
(𝑌 : U) × (𝑌 → 𝑋)

)
The inverse maps a type over 𝑋, 𝑓 : 𝑌 → 𝑋, to the family of fibers, fib 𝑓 .

1.7 Exercises

1. Show that for 𝑛 ≥ 𝑚 and any type 𝐴 we have

∥∥𝐴∥𝑛∥𝑚 ≃ ∥𝐴∥𝑚 .

2. Show that a type 𝑋 is 𝑛-connected if and only if, for every 𝑛-type 𝑌, the

diagonal map

𝑌 → (𝑋 → 𝑌), 𝑦 ↦→ (𝑥 ↦→ 𝑦),
is an equivalence.

3. Show that the map |_|𝑛 : 𝑋 → ∥𝑋∥𝑛 is 𝑛-connected.

4. Consider a map 𝑓 : 𝑋 → 𝑌. We define its 𝑛-image to be the type

im𝑛(𝑓) := (𝑦 : 𝑌) × ∥fib 𝑓 (𝑦)∥𝑛 .

a) Show that we can factorise 𝑓 through the 𝑛-image, that is, construct

a commuting diagram:

𝑋 𝑌

im𝑛(𝑓)

𝑓

𝑝 𝑖

b) Show that 𝑝 is 𝑛-connected and 𝑖 is 𝑛-truncated.

c) Show that if 𝑍 is any type, 𝑔 : 𝑋 → 𝑍 is 𝑛-connected, and ℎ : 𝑍→ 𝑌
is 𝑛-truncated with 𝑓 = ℎ ◦ 𝑔, then there is a unique equivalence

𝑒 : im𝑛(𝑓) → 𝑍 with 𝑒 ◦ 𝑝 = 𝑔 and ℎ ◦ 𝑒 = 𝑖:

𝑍

𝑋 𝑌

im𝑛(𝑓)

ℎ

𝑓

𝑝

𝑔

𝑖

𝑒

(Hint) It’s easier if you assume 𝑔 and ℎ are projections of dependent

sums.

CHAPTER 1. TRUNCATED AND CONNECTED TYPES 10

5. (Eckmann–Hilton). All paths will take place in a fixed type 𝑋.

a) Given paths 𝑝0 , 𝑝1 : 𝑥 = 𝑦 and 𝑞0 , 𝑞1 : 𝑦 = 𝑧, and higher paths

𝑟 : 𝑝0 = 𝑝1 and 𝑠 : 𝑞0 = 𝑞1, define their horizontal multiplication
𝑠 ∗ 𝑟 : 𝑞0 · 𝑝0 = 𝑞1 · 𝑝1 by path induction on 𝑟 and 𝑝0.

𝑥 𝑦 𝑧

𝑝1 𝑞1

𝑝0 𝑞0

𝑠𝑟

b) Given paths fitting into the following diagram

𝑥 𝑦 𝑧

𝑝1 𝑞1

𝑝0 𝑞0

𝑟0

𝑟1

𝑠0

𝑠1

show we have the interchange law:

(𝑠1 ∗ 𝑟1) · (𝑠0 ∗ 𝑟0) = (𝑠1 · 𝑠0) ∗ (𝑟1 · 𝑟0)
c) Deduce that for 𝑛 ≥ 2, the path composition in Ω𝑛(𝑋, 𝑥) is commu-

tative, and thus that 𝜋𝑛(𝑋, 𝑥) is abelian.

6. Show that when 𝑋 is connected, that 𝜋𝑛(𝑋, 𝑥0) � 𝜋𝑛(𝑋, 𝑥1) are merely

isomorphic for any 𝑥0 , 𝑥1 : 𝑋, that is, construct an element of the type

(𝑥0 , 𝑥1 : 𝑋) → ∥𝜋𝑛(𝑋, 𝑥0) ≃ 𝜋𝑛(𝑋, 𝑥1)∥.

7. We define the observational equality type family of the natural numbers

𝐸 : ℕ→ ℕ→ U by

𝐸(0, 0) = 1
𝐸(succ(𝑛), 0) = 0
𝐸(0, succ(𝑛)) = 0

𝐸(succ(𝑛), succ(𝑚)) = 𝐸(𝑛, 𝑚)
a) Define a natural map 𝑛 = 𝑚 → 𝐸(𝑛, 𝑚) for all 𝑛, 𝑚 : ℕ.

b) Use the fundamental theorem of identity types to show this natural

map is an equivalence.

8. Show that a type 𝑋 is 𝑛 + 1-truncated if and only if the diagonal map of

𝑋,

𝛿𝑋 : 𝑋 → 𝑋 × 𝑋, 𝑥 ↦→ (𝑥, 𝑥),
is 𝑛-truncated.

9. Derive the usual elimination rules for the ∃- and ∨-connectives on propo-

sitions, using the definitions as truncated Σ- and +-types, respectively.

10. Show that ∥𝑋∥0 satisfies the universal property of the set quotient of 𝑋
modulo the equivalence relation ∼, where 𝑥 ∼ 𝑥′ if and only if ∥𝑥 =𝑋 𝑥′∥.

Chapter 2

A menagerie of higher inductive
types

2.1 The circle

A higher inductive type is like a normal inductive type, where instead of just

being able to specify points of the type, we can also specify paths between

points, paths between paths, and so on. For example, take the circle, which we

define as follows.

Definition 2.1. The circle is the HIT generated by

∗ : 𝑆1

loop : ∗ = ∗

This type comes with universal properties as normal inductive types do.

In this case the recursion principle tells us that to define a map 𝑆1 → 𝑋 it’s

enough to give a point 𝑥 : 𝑋 and a path 𝑥 =𝑋 𝑥. More precisely, the evaluation

map

(𝑆1 → 𝑋) → (𝑥 : 𝑋) × (𝑥 =𝑋 𝑥), 𝑓 ↦→ (𝑓 (∗), ap 𝑓 (loop)),

is an equivalence. From this we deduce also an induction principle for

type families 𝑝 : 𝑆1 → U . Here we encounter again a “dependent path”

(loop∗(𝑥) =𝑃(∗) 𝑥). The map(
(𝑧 : 𝑆1) → 𝑃(𝑧)

)
→

(
𝑥 : 𝑃(∗) × (loop∗(𝑥) =𝑃(∗) 𝑥)

)
, 𝑓 ↦→ (𝑓 (∗), apd 𝑓 (loop))

is an equivalence, where we need the dependent functoriality construction

apd 𝑓 , which is defined by general path induction.

We can visualise the circle as one would normally, ∗ is the basepoint and

and loop as a loop drawn from the basepoint to itself.

11

CHAPTER 2. A MENAGERIE OF HIGHER INDUCTIVE TYPES 12

loop

∗

In this way higher inductive types let us write down a definition for any

space formed by a collection of points, identifications between those points,

identifications between those identifications, and so on. We can then form any

CW-complex, a standard notion from topology, we might want as an HIT. For

an example of this see the exercises.

2.2 Pushouts

Adding paths to inductive types is like a weaker version quotienting in set

based mathematics, in the sense we force elements to be equal. Thus we can

define all sorts of colimits and other “gluing” constructions by higher inductive

types.

Definition 2.2. Given maps 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐶 we can form their

pushout by the higher inductive type 𝐵 ⊔𝐴 𝐶 with the following constructors:

inl : 𝐵→ 𝐵 ⊔𝐴 𝐶

inr : 𝐶 → 𝐵 ⊔𝐴 𝐶

glue : (𝑎 : 𝐴) → inl(𝑓 𝑎) = inr(𝑔𝑎)

Definition 2.3. Numerous construction of (in general, higher) types as pushouts:

1. Given a type 𝑋 its suspension Σ𝑋 is the pushout of 1 ← 𝑋 → 1. We

often name the two inclusions inl and inr as 𝑁, 𝑆 : 1→ Σ𝑋, for the north
and south poles. The family of paths merid : (𝑥 : 𝑋) → 𝑁 = 𝑆 are called

the meridians.

2. Given types 𝑋, 𝑌, their join 𝑋 ∗ 𝑌 is the pushout of 𝑋 ← 𝑋 × 𝑌 → 𝑌.

3. Given pointed types (𝑋, 𝑥0) and (𝑌, 𝑦0), their wedge product 𝑋 ∨ 𝑌 is

given by the pushout of the inclusion of the basepoints 𝑋 ← 1→ 𝑌.

4. Given pointed types (𝑋, 𝑥0) and (𝑌, 𝑦0), their smash product 𝑋 ∧ 𝑌 is

given as the pushout 1← 𝑋 ∨ 𝑌 → 𝑋 × 𝑌 where:

𝑋 ∨ 𝑌 → 𝑋 × 𝑌
inl 𝑥 ↦→ (𝑥, 𝑦0)
inr 𝑦 ↦→ (𝑥0 , 𝑦)

CHAPTER 2. A MENAGERIE OF HIGHER INDUCTIVE TYPES 13

5. Given a map 𝑓 : 𝑋 → 𝑌 its cofiber, cofib(𝑓), is given by the pushout of

the diagram 1← 𝑋 → 𝑌.

2.3 Suspensions

An immediate use for suspensions is given by defining higher dimensional

spheres. Although it is clear how to define each sphere individually as an HIT,

this doesn’t give a definition of all the spheres internal to type theory, as we

are unable to produce a function ℕ → U this way. Instead we can define the

higher spheres uniformly via iterated suspension.

Definition 2.4. The type family 𝑆− : ℕ→ U of spheres is given by recursion:

𝑆0 := 2

𝑆𝑛+1 := Σ𝑆𝑛

We also let 𝑆−1 := 0 be the empty type.

Geometrically, the spheres 𝑆𝑛−1
are the (homotopy types of) of the unit

spheres of ℝ𝑛
, 𝑛 ≥ 0.

Theorem 2.5 (Loop Space–Suspension Adjunction). Let (𝑋, 𝑥0), (𝑌, 𝑦0) be pointed
types. Then we have an equivalence:(

(Σ𝑋, 𝑁) →• (𝑌, 𝑦0)
)
≃
(
(𝑋, 𝑥0) →• (Ω(𝑌, 𝑦0), refl𝑦0)

)
Proof. We calculate, first by unfolding the universal property of a suspension.

(Σ𝑋, 𝑁) →• (𝑌, 𝑦0) ≡ (𝑓 : Σ𝑋 → 𝑌) × (𝑓 (𝑁) = 𝑦0)
≃ (𝑦𝑁 : 𝑌) × (𝑦𝑆 : 𝑌) × (𝑋 → 𝑦𝑁 = 𝑦𝑆) × (𝑦𝑁 = 𝑦0)

Note that the data of a point 𝑦𝑁 : 𝑌 and a path 𝑦𝑁 = 𝑦0 is contractible, thus by

composing with the inverse of the path, we see the type above is equivalent to:

(𝑦𝑆 : 𝑌) × (𝑔 : 𝑋 → 𝑦0 = 𝑦𝑆)

By using the point 𝑥0 : 𝑋, we get a distinguished path 𝑔(𝑥0) : 𝑦0 = 𝑦𝑆. Thus

we can compose pointwise by the inverse of these paths to get that this type is

equivalent to

(ℎ : 𝑋 → 𝑦0 = 𝑦0) × (ℎ(𝑥0) = refl𝑦0)
which is definitionally:

(𝑋, 𝑥0) →• Ω(𝑌, 𝑦0)
Overall the map takes 𝑓 : Σ𝑋 →• 𝑌 to Ω(𝑓) ◦ 𝜂 : 𝑋 →• Ω𝑌, where

𝜂 : 𝑋 →• ΩΣ𝑋 maps 𝑥 to merid(𝑥0)−1 · merid(𝑥) with the obvious proof of

pointedness. □

CHAPTER 2. A MENAGERIE OF HIGHER INDUCTIVE TYPES 14

Lemma 2.6. A type 𝑋 is 𝑛-truncated if and only if the diagonal map

𝑋 → (𝑆𝑛+1 → 𝑋), 𝑥 ↦→ (𝑧 ↦→ 𝑥),

is an equivalence.

Proof. Induction on 𝑛. For 𝑛 = −2 we have 𝑆𝑛+1 = 𝑆−1 = 0, so (0→ 𝑋) = 1 is

the unit type.

In the step case, note that

(𝑆𝑛+1 → 𝑋) ≃ (𝑥0 , 𝑥1 : 𝑋) × (𝑆𝑛 → (𝑥0 =𝑋 𝑥1))

If 𝑋 is 𝑛 truncated, then 𝑥0 = 𝑥1 is 𝑛−1-truncated, and by induction hypothesis

the type is equivalence to (𝑥0 , 𝑥1 : 𝑋) × (𝑥0 = 𝑥1), which is equivalent to 𝑋, and

this agrees with the diagonal map.

Conversely, to show that the diagonal map (𝑥0 = 𝑥1) → (𝑆𝑛 → 𝑥0 = 𝑥1) is
an equivalence, it suffices to show that the map on total spaces(

(𝑥0 , 𝑥1 : 𝑋) × (𝑥0 = 𝑥1)
)
→

(
(𝑥0 , 𝑥1 : 𝑋) × (𝑆𝑛 → 𝑥0 = 𝑥1)

)
is, but this can be identified with the one we have by assumption. □

Theorem 2.7 (Connectivity of suspension). If 𝑋 is 𝑛-connected then Σ𝑋 is
𝑛 + 1-connected.

Proof. Using Exercise 1.2, it suffices to show that the diagonal map

𝑌 → (Σ𝑋 → 𝑌)

is an equivalence for all 𝑛 + 1-types 𝑌. We give an equivalence (Σ𝑋 → 𝑌) ≃ 𝑌,

and leave it to the reader to check it is compatible with the diagonal map:

(Σ𝑋 → 𝑌) ≃ (𝑦0 , 𝑦1 : 𝑌) × (𝑋 → 𝑦0 = 𝑦1)
≃ (𝑦0 , 𝑦1 : 𝑌) × (𝑦0 = 𝑦1) ≃ 𝑌

Here we used that 𝑦0 = 𝑦1 is an 𝑛-type and the converse of the cited exercise. □

(There’s an alternative proof using the fact that 𝑛-connected maps are closed

under pushouts.)

Corollary 2.8. The sphere 𝑆𝑛 is 𝑛 − 1-connected.

2.4 The three-by-three lemma and applications

The following lemma is an instance of commutativity of colimits (a Fubini-type

lemma), and it’s very useful, though quite tedious to formalize.

CHAPTER 2. A MENAGERIE OF HIGHER INDUCTIVE TYPES 15

Consider a commuting diagram

𝐴00 𝐴02 𝐴04

𝐴20 𝐴22 𝐴24

𝐴40 𝐴42 𝐴44

including homotopies for the four squares, we can either form the pushouts of

the columns resulting in a span

𝐴•0 𝐴•2 𝐴•4 ,

or form the pushouts of the rows resulting in a span

𝐴0• 𝐴2• 𝐴4•.

Lemma 2.9 (3 × 3). There is a natural equivalence between the pushouts of the two
spans above.

We’ll not go into the proof here, but rather focus on some applications.

Proposition 2.10. For any types 𝐴, 𝐵, 𝐶, there is a natural equivalence

(𝐴 ∗ 𝐵) ∗ 𝐶 ≃ 𝐴 ∗ (𝐵 ∗ 𝐶).
Proof. Consider the commuting diagram

𝐴 𝐴 × 𝐵 𝐵

𝐴 × 𝐶 𝐴 × 𝐵 × 𝐶 𝐵 × 𝐶

𝐴 × 𝐶 𝐴 × 𝐶 𝐶

∼
∼

The span given by taking the pushouts of the columns is

𝐴 𝐴 × (𝐵 ∗ 𝐶) 𝐵 ∗ 𝐶,

whose pushout is 𝐴 ∗ (𝐵 ∗ 𝐶). The span given by taking the pushouts of the

rows is

𝐴 ∗ 𝐵 (𝐴 ∗ 𝐵) × 𝐶 𝐶,

whose pushout is (𝐴 ∗ 𝐵) ∗ 𝐶. □

In the exercises we’ll construct natural equivalences 2 ∗ 𝐴 ≃ Σ𝐴.

Corollary 2.11. For every 𝑛, 𝑚 : ℕ we have an equivalence

𝑆𝑛 ∗ 𝑆𝑚 ≃ 𝑆𝑛+𝑚+1.

CHAPTER 2. A MENAGERIE OF HIGHER INDUCTIVE TYPES 16

2.5 Exercises

1. Show that the two definitions of 𝑆1
are equivalent. That is show the HIT

for 𝑆1
is the same thing as Σ2.

2. Show that evaluation at the loop gives pointed equivalence

(𝑆1 →• 𝑋) →• Ω𝑋

for any pointed type 𝑋.

Conclude, using the suspension–loop adjunction, that we have a natural

equivalence

(𝑆𝑛 →• 𝑋) →• Ω𝑛𝑋

for all 𝑛 : ℕ.

3. Show that a type 𝑋 is a proposition iff inl : 𝑋 → 𝑋 ∗ 𝑋 is an equivalence.

4. Show that 𝐴 ∨ 𝐵 ≃ 𝐴 ∗ 𝐵 for propositions 𝐴, 𝐵, where 𝐴 ∨ 𝐵 := ∥𝐴 + 𝐵∥.
(Beware the notational overload between the wedge sum and disjunction:

It’s not too bad in practice, because the only pointed proposition is the

unit type!)

5. Show that 2 ∗ 𝑋 ≃ Σ𝑋 for any pointed type 𝑋. (Harder) Show that

𝑆1 ∧ 𝑋 ≃ Σ𝑋

6. Show that the smash product is equivalently the pushout:

𝑋 + 𝑌 𝑋 × 𝑌

1 + 1 𝑋 ∧ 𝑌

7. Construct for pointed types 𝑋,𝑌 an equivalence

𝑋 ∗ 𝑌 ≃ Σ(𝑋 ∧ 𝑌).

8. The torus is often drawn as a (filled) square with side identifications

The arrows show how to glue the edges of the square: arrows with

corresponding symbols should be glued together, in the orientation

depicted. Using this drawing, define a higher inductive type for the torus.

Show this type is equivalent to 𝑆1 × 𝑆1
.

(Hint) You may assume that eliminators compute definitionally on point

constructors (as in cubical type theory), otherwise it’s quite intricate!

Chapter 3

The Hopf fibration and the long
exact sequence

3.1 The fundamental group of the circle

With the tools we have built up, we can now recreate a very classical result, that

𝜋1(𝑆1) = ℤ. We do this in the usual way, by constructing the universal cover of

the circle. Consider the type family:

𝑅 : 𝑆1 → U
𝑅(∗) := ℤ

ap𝑅(loop) := (_ + 1)

where we consider _ + 1 : ℤ = ℤ by univalence.

This cover looks like a homotopy theoretic version of the real numbers,

wound up in a helix over the circle. Over each point in the circle we have a copy

of the integers, and rotating around the circle once, increases the integer in the

cover. You can imagine unwinding a loop that goes round the origin 𝑛 times,

to a segment [0, 𝑛] (or [𝑛, 0] for negative 𝑛) in the real numbers. Our goal now

is to show that this type family actually corresponds to the identity types on

the circle. To do this we will use the fundamental theorem of the identity types.

It’s sensible to expect this to work, since our picture of 𝑅 is the real line, which

is contractible.

To start with there is an obvious map ∗ = 𝑥 → 𝑅(𝑥) for 𝑥 : 𝑆1
given by

path induction sending refl∗ to 0 : ℤ. Now our goal is to show the total space

(𝑥 : 𝑆1)×𝑅(𝑥) is contractible. The centre of contraction we choose is (∗, 0). Hence

our goal is to show for all 𝑥 : 𝑆1
, and 𝑦 : 𝑅(𝑥) we have (∗, 0) = (𝑥, 𝑦). By our

characterisation of identity types of dependent sums (1.1), this type is equivalent

to (𝑝 : ∗ =𝑆1 𝑥) × (𝑝∗0 =𝑅(𝑥) 𝑦). By 𝑆1
-induction, since the second component

is a proposition, this is the same as constructing a function ℎ : ℤ→ (∗ =𝑆1 ∗)
satisfying ℎ(𝑘)∗(0) = 𝑘 for all 𝑘, together with a proof 𝐻 : loop∗(ℎ) = ℎ. To

construct this proof, it will be helpful to generalise the situation to apply path

induction.

17

CHAPTER 3. THE HOPF FIBRATION AND THE LES 18

Lemma 3.1. Let 𝑃, 𝑄 : 𝑋 → U and 𝑝 : 𝑥0 =𝑋 𝑥1. Let 𝑓 : 𝑃(𝑥0) → 𝑄(𝑥0). Then we
can identify 𝑝∗(𝑓) : 𝑃(𝑥1) → 𝑄(𝑥1) with the composition

𝑄(𝑝) ◦ 𝑓 ◦ 𝑃(𝑝)−1 : 𝑃(𝑥1) → 𝑄(𝑥1).

Proof. By path induction. □

Lemma 3.2. The total space (𝑥 : 𝑆1) × 𝑅(𝑥) is contractible.

Proof. First we construct ℎ : (𝑘 : ℤ) → (∗ =𝑆1 ∗) by integer induction as the

power ℎ(𝑘) := loop𝑘
. This indeed satisfies ℎ(𝑘)∗(0) = (loop𝑘)∗(0) = 𝑘, as desired.

Next we show loop∗(ℎ) = ℎ. To apply Lemma 3.1 it’s important to realize

that we’re transporting in the family of types 𝑅(𝑥) → (∗ =𝑆1 𝑥) for 𝑥 : 𝑆1
. Now

we have

loop∗(ℎ) = (_ · loop) ◦ ℎ ◦ (_ − 1),
which maps 𝑘 : ℤ to loop𝑘−1 · loop, which indeed equals ℎ(𝑘) = loop𝑘

.

Hence by the discussion above (𝑥 : 𝑆1) × 𝑅(𝑥) is contractible. □

Corollary 3.3. The family of maps ∗ = 𝑥 → 𝑅(𝑥) is a family of equivalences. Hence
Ω(𝑆1 , ∗) ≃ ℤ.

Proof. Immediate from the previous lemma and the fundamental theorem of

identity types □

Note also that by construction, this equivalence is an equivalence of groups.

Corollary 3.4. 𝜋1(𝑆1) = ℤ and 𝜋𝑛(𝑆1) = 0 for all 𝑛 > 1.

Proof. We have

𝜋1(𝑆1) := ∥Ω𝑆1∥0 = ∥ℤ∥0 = ℤ

and for 𝑛 > 1 we note Ω𝑛𝑆1 = Ω𝑛−1ℤ = 1 since ℤ is a set. Thus as a group

𝜋𝑛(𝑆1) is trivial. □

3.2 Multiplying points on the circle

We start our view into the world of higher homotopy types by having a closer

look at the circle. It is a 1-type, so under the homotopy hypothesis (identifying

types and∞-groupoids), it corresponds to a groupoid. We shall see in three

ways that it carries a multiplication. It is the homotopical abstraction of the

group of rotations in the plane, SO(2), or equivalently, the group of unit complex

numbers, U(1) = { 𝑧 : ℂ2 | |𝑧| = 1 }.
For the first, we can “by hand” define the product operation _ · _ : 𝑆1 →

𝑆1 → 𝑆1
. (Exercise)

For the second, let us think about 𝑆1
as a groupoid of structured objects.

(This is how we first encounter many groupoids or categories, as structured

sets, such as groups, rings, partial orders, etc.)

Finally, we shall see that 𝑆1
is itself the loop space of a pointed type, so we

have an induced multiplication corresponding to composition of loops.

CHAPTER 3. THE HOPF FIBRATION AND THE LES 19

Definition 3.5. The type of sets with an endomorphism is Set⟲ := (𝑋 :
Set) × (𝑋 → 𝑋).

Use univalence to verify that this is a groupoid.

We have a map 𝜑 : 𝑆1 → Set⟲ whose first component at 𝑧 : 𝑆1
is the identity

type ∗ = 𝑧 and whose second component is the map _ · loop : (∗ = 𝑧) → (∗ = 𝑧)
that composes with the loop.

Theorem 3.6. The map 𝜑 : 𝑆1 → Set⟲ is an embedding, so it induces an equivalence
from 𝑆1 to its image.

Proof. Consider the diagram:

(3.1)

𝑆1

(
(𝑋 : U) × (𝑋 → 𝑆1)

)
(1,cst∗) (𝑆1 → U)(∗=_) im(𝜑)

(1,cst∗) 𝜑

∼ ∼

To show 𝜑 is an equivalence, it suffices to show the map on the left is an

equivalence, but that is easy.

Alternatively, we show that the middle vertical map is an equivalence,

which follows from the type theoretic Yoneda lemma: The identity type gives an

embedding 𝑋 ↩→ (𝑋 → U), 𝑥 ↦→ (𝑥′ ↦→ 𝑥 =𝑋 𝑥′). □

Using Corollary 3.3 we can identify 𝜑(∗) as the set of integers ℤ with the

successor map suc : ℤ→ ℤ.

Definition 3.7. The type of ℤ-torsors (relative to the generating element 1 : ℤ),

Torsℤ, is the connected component of Set⟲ at (ℤ, suc).
So another way to state the theorem is that 𝜑 induces an equivalence

𝑆1 ≃ Torsℤ. In this form, ℤ-torsors are also known as infinite cycles. See the

exercises for how this gives another way of looking at the multiplication on the

circle.

Finally, we can improve the multiplication on the circle by exhibiting it

as coming from composition of loops in another type. That is, we can find a

pointed (1-connected) type B2ℤ and a pointed equivalence 𝑆1 ≃• ΩB2ℤ. In fact,

we even have different ways of defining B2ℤ:

1. We can take B2ℤ := ∥𝑆2∥2.

2. We can take B2ℤ := (𝑋 : U) × ∥𝑋 ≃ 𝑆1∥0.

3. We can take B2ℤ := (𝑋 : U) × ∥𝑋∥ ×
(
(𝑥 : 𝑋) → 𝑆1 ≃• (𝑋, 𝑥)

)
.

Once we have the LES we get 𝜋2(𝑆2) = 𝜋1(𝑆1) = ℤ. This gives that ∥𝑆2∥2
is a delooping of 𝑆1

. The second equivalence comes from an equivalence

(𝑆1 → 𝑆1) ≃ (ℤ × 𝑆1), from which we get that evaluation at ∗ is an equivalence:(
(𝑒 : 𝑆1 ≃ 𝑆1) × ∥𝑒 = id∥

)
≃ 𝑆1.

CHAPTER 3. THE HOPF FIBRATION AND THE LES 20

3.3 The Hopf fibration

Definition 3.8. We define a type family 𝐻 : 𝑆2 → U by induction:

𝐻(𝑁) := 𝐻(𝑆) := 𝑆1

ap𝐻(merid𝑧) := (𝑧 · _)

Here we are using univalence implicitly to regard multiplication by 𝑧 as an

identification 𝑧 · _ : 𝑆1 = 𝑆1
.

In fact, we can do the same construction for any left-invertible H-space,

meaning a pointed type 𝐴 with a multiplication _ · _ : 𝐴 → 𝐴 → 𝐴 s.t.

𝑎 · pt = pt ·𝑎 = 𝑎 for all 𝑎 : 𝐴, and 𝑎 · _ : 𝐴→ 𝐴 is an equivalence for each 𝑎 : 𝐴.

We get 𝐻 : Σ𝐴→ U with 𝐻(𝑁) = 𝐻(𝑆) = 𝐴 and ap𝐻(merid𝑎) = (𝑎 · _).
We would like to identify the total space of such a family. This is exactly

what is provided by the flattening lemma. We’ll just state it for now, and defer

the proof to Chapter 4.

Lemma 3.9 (Flattening lemma). Given a span 𝐴 𝐶 𝐵
𝑓 𝑔

with pushout 𝐷
and a type family 𝑃 : 𝐷 → U defined by

𝑃inl : 𝐴→ U
𝑃inr : 𝐵→ U
𝑃glue : (𝑐 : 𝐶) → 𝑃inl(𝑓 (𝑐)) ≃ 𝑃inr(𝑔(𝑐)),

the total space of 𝑃 is equivalent to the pushout of the span(
(𝑎 : 𝐴) × 𝑃inl(𝑎)

) (
(𝑐 : 𝐶) × 𝑃inl(𝑓 (𝑐))

) (
(𝑏 : 𝐵) × 𝑃inr(𝑏)

)
,

where the left maps is (𝑐, 𝑢) ↦→ (𝑓 (𝑐), 𝑢) and the right map is (𝑐, 𝑢) ↦→ (𝑔(𝑐), 𝑃glue(𝑐)(𝑢)).

Since the suspension Σ𝐴 is the pushout of the span 1← 𝐴→ 1, this applies

to the family 𝐻, and we conclude that the total space (𝑧 : Σ𝐴) × 𝐻(𝑧) is the

pushout of the span at the top of the following map of spans:

𝐴 𝐴 × 𝐴 𝐴

𝐴 𝐴 × 𝐴 𝐴

id

fst (𝑎,𝑏)↦→𝑎·𝑏

(𝑎,𝑏)↦→(𝑎,𝑎·𝑏) id

fst snd

Since the vertical maps are equivalences, the pushouts are equivalent, so the

total space is equivalent to 𝐴 ∗ 𝐴.

Corollary 3.10. For the Hopf fibration 𝐻 : 𝑆2 → U , the total space can be identified
with 𝑆3.

Proof. Use 𝑆1 ∗ 𝑆1 = 𝑆3
from Corollary 2.11. □

CHAPTER 3. THE HOPF FIBRATION AND THE LES 21

3.4 The long exact sequence

For any pointed map 𝑓 : 𝐸 →• 𝐵 we get a long exact sequence of homotopy

groups:

· · · 𝜋𝑛+1(𝐵)

𝜋𝑛(𝐹) 𝜋𝑛(𝐸) 𝜋𝑛(𝐵)

𝜋𝑛−1(𝐹) · · ·

· · · 𝜋1(𝐵)

𝜋0(𝐹) 𝜋0(𝐸) 𝜋0(𝐵)

where 𝐹 := fib 𝑓 (•) is the fiber of 𝑓 and the arrows are homomorphisms of

groups until 𝜋1(𝐵), and then maps of pointed sets. Exactness means that the

image of a map equals the kernel of the next.

We construct this in several steps:

1. Form the untruncated fiber sequence: We have the fiber map Φ :
(𝐸, 𝐵 : U•) × (𝐸 →• 𝐵) → (𝐸, 𝐵 : U•) × (𝐸 →• 𝐵) given by (𝐸, 𝐵, 𝑓) ↦→
(fib 𝑓 (•), 𝐸, fst). Thus we can iterate an get a sequence Φ𝑛(𝐸, 𝐵, 𝑓) for any

𝑛 : ℕ.

2. Construct an equivalence to

· · · Ω𝑛+1(𝐵)

Ω𝑛(𝐹) Ω𝑛(𝐸) Ω𝑛(𝐵)

Ω𝑛−1(𝐹) · · ·

· · · Ω(𝐵)

𝐹 𝐸 𝐵

For this, we note that 𝐹2(𝐸, 𝐵, 𝑓) = (Ω𝐵, 𝐹, 𝛿), where 𝛿 : Ω𝐵→• 𝐹 maps

a loop 𝑝 to 𝑝∗(•).

CHAPTER 3. THE HOPF FIBRATION AND THE LES 22

3. Set-truncate at the end.

Applied to the Hopf fiber sequence 𝑆1 → 𝑆3 → 𝑆2
, we get the long exact

sequence ending with:

· · · 𝜋𝑛+1(𝑆2)

0 𝜋𝑛(𝑆3) 𝜋𝑛(𝑆2)

0 · · ·

· · · 𝜋4(𝑆2)

0 𝜋3(𝑆3) 𝜋3(𝑆2)

0 0 𝜋2(𝑆2)

ℤ 0 0

0 0 0

We conclude that 𝜋2(𝑆2) ≃ ℤ and 𝜋𝑛(𝑆3) ≃ 𝜋𝑛(𝑆2) for 𝑛 ≥ 3.

CHAPTER 3. THE HOPF FIBRATION AND THE LES 23

3.5 Exercises

1. Construct the product on the circle directly by double circle induction.

2. Give another proof of Theorem 3.6 by showing that ap𝜑 : (∗ = ∗) →
(𝜑(∗) = 𝜑(∗)) is an equivalence.

3. Construct a retraction 𝜌 : Ω𝑆2 → 𝑆1
of 𝜂 : 𝑆1 → Ω𝑆2

. (Hint) Use the

Hopf fibration.

4. We can define a “tensor product” of ℤ-torsors by setting

(𝑋, 𝑡) ⊗ (𝑌, 𝑢) := (𝑋 × 𝑌/∼, 𝑠)

using the set quotient by the equivalence relation generated by (𝑡(𝑥), 𝑦) ∼
(𝑥, 𝑢(𝑦)), and setting 𝑠[(𝑥, 𝑦)] := [𝑡(𝑥), 𝑦)]. Check that this operation is

well defined and gives an H-space structure on Torsℤ with the base point

(ℤ, suc) as neutral element.

5. Investigate some other components of Set⟲, in particular those containing

(Fin 𝑛, suc), where Fin 𝑛 = (𝑘 : ℕ) × (𝑘 < 𝑛) and the successor operation

is taken modulo 𝑛. If this component is denoted Cyc𝑛 (for 𝑛-cycles), what

are the maps Cyc𝑛 → Cyc𝑚?

Chapter 4

The Freudenthal Suspension
Theorem and Degrees

In this chapter we’ll compute some nontrivial homotopy groups of spheres,

namely 𝜋𝑛(𝑆𝑛) = ℤ for 𝑛 ≥ 2, from which we directly get 𝜋3(𝑆2) = ℤ.

Our main tool is the Freudenthal Suspension Theorem:

Theorem 4.1 (Freudenthal). If 𝑋 is a pointed 𝑛-connected type with 𝑛 ≥ 0, then the
unit map 𝜂 : 𝑋 →• ΩΣ𝑋 is 2𝑛-connected.

There is a hands-on proof in the HoTT book (Univalent Foundations Program

2013), based on the wedge connectivity lemma. This proof is a bit mysterious

(to me), so instead we’ll derive it from another celebrated result, namely the

Blakers–Massey theorem:

Theorem 4.2 (Blakers–Massey). In any pushout square of maps 𝑓 and 𝑔,

𝐴 𝐶

𝐵 𝑄,

𝑔

𝑓
⌜

inr

inl

where 𝑓 is 𝑛-connected and 𝑔 is 𝑚-connected, if we form the pullback 𝑃 of the cospan
𝐵 → 𝑄 ← 𝐶, then we get an induced map (the gap map) 𝑑 : 𝐴 → 𝑃, and this is
(𝑛 + 𝑚)-connected.

Now Theorem 4.1 follows directly from Theorem 4.2 via the pushout square

𝑋 1

1 Σ𝑋,
⌜

whose gap map is the meridian map, merid : 𝑋 → 𝑁 =Σ𝑋 𝑆, which is identified

with 𝜂 : 𝑋 → ΩΣ𝑋 via composition with meridpt𝑋 .

24

CHAPTER 4. FREUDENTHAL AND DEGREES 25

We defer the proof of Theorem 4.2 a bit, preferring instead first to harvest

the fruits of Theorem 4.1.

Corollary 4.3. Suspension induces an isomorphism 𝜋𝑘(𝑆𝑛) → 𝜋𝑘+1(𝑆𝑛+1) for
𝑘 ≤ 2𝑛 − 2.

Definition 4.4. The stable homotopy groups of spheres are the groups𝜋𝑘(𝕊) :=
𝜋𝑘+𝑛(𝑆𝑛) for 𝑛 ≥ 𝑘 + 2.

Note that the Freudenthal suspension theorem by itself doesn’t quite

suffice to show that 𝜋1(𝑆1) → 𝜋2(𝑆2) is an equivalence. But we already know

𝜋2(𝑆2) = ℤ, so we get:

Corollary 4.5. We have 𝜋𝑛(𝑆𝑛) = ℤ for 𝑛 ≥ 1.

4.1 Whitehead’s theorem and principle

There’s another way to get Corollary 4.5, which is illuminating in itself, and

involves a bit more careful analysis of 𝑛-connected maps.

This is closely related to Whitehead’s theorem and principle. In the classical

model of infinity groupoids, this is true for all types, but there are many models

where that version fails:

Theorem 4.6 (Whitehead). Suppose𝑋 and𝑌 are 𝑛-types and 𝑓 : 𝑋 → 𝑌 induces a bi-
jection on components, ∥𝑋∥0 → ∥𝑌∥0, and an isomorphism 𝜋𝑘(𝑋, 𝑥) → 𝜋𝑘(𝑌, 𝑓 (𝑥))
for all 𝑥 : 𝑋 and all 1 ≤ 𝑘 ≤ 𝑛. Then 𝑓 is an equivalence.

Proof. By induction on 𝑛, the case 𝑛 = −2 being trivial.

In the step case, it suffices to show Ω(𝑓) : Ω(𝑋, 𝑥) → Ω(𝑌, 𝑓 (𝑥)) is an

equivalence for all 𝑥 : 𝑋. This follows by induction hypothesis and the

generalized fact that 𝜋𝑘(ap 𝑓) : 𝜋𝑘(𝑥 =𝑋 𝑥′, 𝑞) → 𝜋𝑘(𝑓 (𝑥) =𝑌 𝑓 (𝑥′), ap 𝑓 (𝑞)) is

an isomorphism for 1 ≤ 𝑘 < 𝑛 and all 𝑥′ : 𝑋 and 𝑞 : 𝑥 =𝑋 𝑥′, which follows by

path induction on 𝑞 and then the hypothesis. □

Corollary 4.7. An 𝑛-type 𝑋 is contractible if and only if 𝑋 is connected and 𝜋𝑘(𝑋, 𝑥)
vanishes for all 1 ≤ 𝑘 ≤ 𝑛 and 𝑥 : 𝑋.

Corollary 4.8. For 𝑛 ≥ 0, a map 𝑓 : 𝑋 → 𝑌 is 𝑛-connected if and only if we have:

• ∥ 𝑓 ∥0 : ∥𝑋∥0 → ∥𝑌∥0 is an isomorphism;

• 𝜋𝑘(𝑓) : 𝜋𝑘(𝑋, 𝑥) → 𝜋𝑘(𝑋, 𝑓 (𝑥)) is an isomorphism for 1 ≤ 𝑘 ≤ 𝑛 and 𝑥 : 𝑋,

• 𝜋𝑛+1(𝑓) is surjective for all 𝑥 : 𝑋.

Proof. The “only if” part comes from the LES, and the “if” part from the LES

and Corollary 4.7 applied to the fibers of 𝑓 . □

NB It’s possible to prove Corollary 4.8 without using the LES, and this then

gives a more direct proof that suspension is an equivalence 𝜋1(𝑆1) → 𝜋2(𝑆2).

CHAPTER 4. FREUDENTHAL AND DEGREES 26

4.2 Join and wedge connectivity

Both Freudenthal and Blakers–Massey were originally proved in HoTT by clever

arguments using the wedge connectivity lemma (Lumsdaine and Licata 2012;

Hou (Favonia), Finster, Licata, and Lumsdaine 2016). The wedge connectivity

lemma itself comes from the dual Blakers–Massey theorem, which is quite a bit

easier than Blakers–Massey itself:

Theorem 4.9 (Dual Blakers–Massey). In any pullback square of maps 𝑓 and 𝑔,

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍,

snd

fst
⌟

𝑔

𝑓

where 𝑓 is 𝑛-connected and 𝑔 is 𝑚-connected, if we form the pushout 𝑄 of the span
𝑋 ← 𝑋 ×𝑍 𝑌 → 𝑌, then we get an induced map (the cogap) 𝑐 : 𝑄 → 𝑍, and this is
(𝑛 + 𝑚 + 2)-connected.

This in turns follows from the join connectivity lemma:

Lemma 4.10 (Join connectivity). If 𝑋 is 𝑛-connected and 𝑌 is 𝑚-connected, then
𝑋 ∗ 𝑌 is (𝑛 + 𝑚 + 2)-connected.

Proof sketch. Suppose 𝑍 is an (𝑛 + 𝑚 + 2)-type. Then 𝑍 → (𝑋 ∗ 𝑌 → 𝑍) is an

equivalence if and only if

𝑍→ (𝑋 → 𝑍) ×(𝑋×𝑌→𝑍) (𝑌 → 𝑍)

is, which in turn means that we have unique diagonal lifts in the square

𝑋 𝑍

1 (𝑌 → 𝑍).

So it suffices to check that 𝑍 → (𝑌 → 𝑍) is 𝑛-truncated. So we look at the

diagonal fillers in a square

𝑆𝑛+1 𝑍

1 (𝑌 → 𝑍),

which are unique if 𝑍→ (𝑆𝑛+1 ∗𝑌 → 𝑍) is an equivalence. But 𝑆𝑛+1 ∗𝑌 ≃ Σ𝑛+2𝑌
is (𝑛 + 𝑚 + 2)-connected, so this checks out. □

See Anel, Biedermann, Finster, and Joyal (2020) for the most streamlined

approach to these matters.

CHAPTER 4. FREUDENTHAL AND DEGREES 27

4.3 The zigzag construction

The best explanation we have (in my opinion) of the Blakers–Massey theorem

comes from the work of Wärn (2024) on the zigzag construction. This gives us

precise information on the path spaces of pushouts, as follows.

Consider a span, straightened out as a family 𝑅 : 𝐴 → 𝐵 → U , giving a

pushout square:

(𝑥 : 𝐴) × (𝑦 : 𝐵) × 𝑅(𝑥, 𝑦) 𝐵

𝐴 𝑄
⌜

inr

inl

We want to understand the identity types inl(𝑎0) = inl(𝑥) and inl(𝑎0) = inr(𝑦)
for 𝑥 : 𝐴 and 𝑦 : 𝐵.

The initial observation, due to Kraus and Raumer (2021), is that these are

freely generated by refl : inl(𝑎0) = inl(𝑎0) and equivalences 𝑟 · _ : (inl(𝑎0) =
inl(𝑥)) ≃ (inl(𝑎0) = inr(𝑦) for all 𝑟 : 𝑅(𝑥, 𝑦).

David Wärn then observed that we can unravel this as sequential colimits

over zigzags of length at most 𝑡. He defined types 𝑎0 ⇝𝑡 𝑥 (𝑡 even) and 𝑎0 ⇝𝑡 𝑦
(𝑡 odd), 𝑡 ≥ −1. We take 𝑎0 ⇝0 𝑥 := (𝑎0 =𝐴 𝑥) and 𝑎0 ⇝−1 𝑦 := 0. In the step

cases, we have pushouts

(𝑦 : 𝐵) × 𝑅(𝑥, 𝑦) × (𝑎0 ⇝𝑡 𝑥) (𝑦 : 𝐵) × 𝑅(𝑥, 𝑦) × (𝑎0 ⇝𝑡+1 𝑦)

(𝑎0 ⇝𝑡 𝑥) (𝑎0 ⇝𝑡+2 𝑥)

𝑟·_

⌜
𝑟−1·_

and similarly for (𝑎0 ⇝𝑡+2 𝑦).

Theorem 4.11 (Wärn). We have equivalences for all 𝑥 : 𝐴 and 𝑦 : 𝐵:

(𝑎0 ⇝∞ 𝑥) ≃ (inl(𝑎0) =𝑄 inl(𝑥))
(𝑎0 ⇝∞ 𝑦) ≃ (inl(𝑎0) =𝑄 inr(𝑦)),

where (𝑎0 ⇝∞ 𝑥) := lim−−→𝑡
(𝑎0 ⇝2𝑡 𝑥) and (𝑎0 ⇝∞ 𝑦) := lim−−→𝑡

(𝑎0 ⇝2𝑡−1 𝑦).

Corollary 4.12 (van Kampen). The groupoid ∥𝑄∥1 can be described with identity
types as set quotients of sequences. E.g., ∥inl(𝑎0) = inl(𝑥)∥0 is the set quotient of
sequences

(𝑎0 , 𝑟0 , 𝑏0 , 𝑟1 , 𝑎1 , . . . , 𝑏𝑛 , 𝑟𝑛+1 , 𝑥),
modulo erasing steps (𝑟, _, 𝑟).

Corollary 4.13. Suppose 𝐴 and 𝐵 are 1-types and both maps in the span 𝐴← 𝑅→ 𝐵
are 0-truncated. Then 𝑄 is a 1-type and the gap map is an embedding.

CHAPTER 4. FREUDENTHAL AND DEGREES 28

This solved a long-standing open problem, showing that the free∞-group

of a set is in fact a 1-group.

We also get Theorem 4.2 from the following more precise theorem:

Theorem 4.14. Suppose in the span 𝐴← 𝑅→ 𝐵 the legs are 𝑛- and 𝑚-connected,
respectively. Then for any 𝑟 : 𝑅(𝑥, 𝑦), the map 𝑟 · _ : (𝑎0 ⇝2𝑘 𝑥) → (𝑎0 ⇝2𝑘+1 𝑦) is
(𝑘(𝑛 + 𝑚 + 4) + 𝑚)-connected, and the map 𝑟−1 · _ : (𝑎0 ⇝2𝑘−1 𝑦) → (𝑎0 ⇝2𝑘 𝑥) is
(𝑘(𝑛 + 𝑚 + 4) − 2)-connected.

4.4 Exercises

1. Deduce the dual Blakers–Massey Theorem 4.9 from the Join Connectiv-

ity Lemma 4.10 by identifying the fibers of the cogap map with the joins

of the fibers of legs in the cospan.

2. Deduce the Wedge Connectivity Lemma from the dual Blakers–Massey The-

orem 4.9, i.e., consider the pullback square, for pointed types 𝑋,𝑌,

1 𝑌

𝑋 𝑋 × 𝑌.

⌟

Show that if 𝑋 is 𝑛-connected and 𝑌 is 𝑚-connected, then the wedge

inclusion map 𝑋 ∨ 𝑌 → 𝑋 × 𝑌 is (𝑛 + 𝑚)-connected.

3. Show that the counit 𝜀 : ΣΩ𝑋 → 𝑋 of the loop–suspension adjunction is

2𝑛-connected if 𝑋 is 𝑛-connected.

4. Show that the pushout of an embedding is an embedding, i.e., if 𝑔 is

(−1)-truncated, then so is inl in the pushout square:

𝑅 𝐵

𝐴 𝑄

𝑓

𝑔

⌜
inr

inl

Chapter 5

Outlook

Things we didn’t talk about, in no particular order:

• Projective spaces (Buchholtz and Rĳke 2017).

• Eilenberg–Mac Lane spaces (Licata and Finster 2014; Buchholtz, J. Daniel

Christensen, Flaten, and Rĳke 2023; Wärn 2023).

• 𝜋4(𝑆3) via Whitehead products and the Gysin sequence in Brunerie’s

thesis (Brunerie 2016). Later different computation by Ljungström and

Mörtberg (2023).

• The EHP sequence (Cagne, Buchholtz, Kraus, and Bezem 2024).

• Spectra and spectral sequences (Doorn 2018).

• Cohomology (Buchholtz and Hou (Favonia) 2020; Lamiaux, Ljungström,

and Mörtberg 2023).

• Homology (Graham 2018),

• The Hurewicz Theorem (J Daniel Christensen and Scoccola 2023).

• Steenrod operations (Brunerie 2017).

• Syllepsis (Sojakova and Kavvos 2022).

• Nilpotent types (Scoccola 2020).

• Higher group theory (Buchholtz, Doorn, and Rĳke 2018; Buchholtz and

Rĳke 2023; Bezem, Buchholtz, Cagne, Dundas, and D. R. Grayson 2024;

Swan 2022).

• Modalities and localization (Rĳke, Shulman, and Spitters 2020; J. Daniel

Christensen, Opie, Rĳke, and Scoccola 2020; J. Daniel Christensen and

Rĳke 2022; Myers 2022; Myers and Riley 2023).

• . . .

29

Bibliography

Anel, Mathieu, Georg Biedermann, Eric Finster, and André Joyal (2020). “A

generalized Blakers-Massey theorem”. In: J. Topol. 13.4, pp. 1521–1553. doi:

10.1112/topo.12163 (cit. on p. 26).

Bezem, Marc, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas, and

Daniel R. Grayson (Apr. 6, 2024). Symmetry.

https://github.com/UniMath/SymmetryBook. Commit: 994b4f1 (cit. on

p. 29).

Brunerie, Guillaume (2016). “On the homotopy groups of spheres in homotopy

type theory”. PhD thesis. arXiv: 1606.05916 (cit. on p. 29).

— (2017). The Steenrod squares in homotopy type theory. TYPES 2017 extended

abstract (cit. on p. 29).

— (Aug. 2019). “The James Construction and 𝜋4(𝕊3) in Homotopy Type

Theory”. In: J. Autom. Reason. 63.2, pp. 255–284. doi:

10.1007/s10817-018-9468-2.
Buchholtz, Ulrik, J. Daniel Christensen, Jarl G. Taxerås Flaten, and Egbert Rĳke

(2023). Central H-spaces and banded types. arXiv: 2301.02636 [math.AT]
(cit. on p. 29).

Buchholtz, Ulrik, Floris van Doorn, and Egbert Rĳke (2018). “Higher Groups in

Homotopy Type Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’18. Oxford, United Kingdom:

Association for Computing Machinery, pp. 205–214. doi:

10.1145/3209108.3209150. arXiv: 1802.04315 (cit. on p. 29).

Buchholtz, Ulrik and Kuen-Bang Hou (Favonia) (June 2020). “Cellular

Cohomology in Homotopy Type Theory”. In: Logical Methods in Computer
Science Volume 16, Issue 2. doi: 10.23638/LMCS-16(2:7)2020 (cit. on p. 29).

Buchholtz, Ulrik and Egbert Rĳke (2017). “The real projective spaces in

homotopy type theory”. In: 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2017). New York, NY, USA: IEEE, pp. 1–8. doi:

10.1109/LICS.2017.8005146. arXiv: 1704.05770 (cit. on p. 29).

— (Nov. 2018). “The Cayley-Dickson Construction in Homotopy Type

Theory”. In: Higher Structures 2.1, pp. 30–41. doi: 10.21136/hs.2018.02.
— (2023). “The long exact sequence of homotopy 𝑛-groups”. In: Mathematical

Structures in Computer Science 33.8, pp. 679–687. doi:

10.1017/S0960129523000038. arXiv: 1912.08696 (cit. on p. 29).

30

https://doi.org/10.1112/topo.12163
https://github.com/UniMath/SymmetryBook
https://arxiv.org/abs/1606.05916
https://doi.org/10.1007/s10817-018-9468-2
https://arxiv.org/abs/2301.02636
https://doi.org/10.1145/3209108.3209150
https://arxiv.org/abs/1802.04315
https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.1109/LICS.2017.8005146
https://arxiv.org/abs/1704.05770
https://doi.org/10.21136/hs.2018.02
https://doi.org/10.1017/S0960129523000038
https://arxiv.org/abs/1912.08696

BIBLIOGRAPHY 31

Cagne, Pierre, Ulrik Buchholtz, Nicolai Kraus, and Marc Bezem (2024). On
symmetries of spheres in univalent foundations. arXiv: 2401.15037 [cs.LO]
(cit. on p. 29).

Christensen, J Daniel and Luis Scoccola (July 2023). “The Hurewicz theorem in

homotopy type theory”. In: Algebraic & Geometric Topology 23.5,

pp. 2107–2140. doi: 10.2140/agt.2023.23.2107 (cit. on p. 29).

Christensen, J. Daniel, Morgan Opie, Egbert Rĳke, and Luis Scoccola (Feb.

2020). “Localization in Homotopy Type Theory”. In: Higher Structures 4.1,

pp. 1–32. doi: 10.21136/hs.2020.01 (cit. on p. 29).

Christensen, J. Daniel and Egbert Rĳke (2022). “Characterizations of modalities

and lex modalities”. In: Journal of Pure and Applied Algebra 226.3, p. 106848.

doi: 10.1016/j.jpaa.2021.106848 (cit. on p. 29).

Doorn, Floris van (2018). “On the Formalization of Higher Inductive Types and

Synthetic Homotopy Theory”. PhD thesis. Carnegie Mellon University.

arXiv: 1808.10690 [math.AT] (cit. on p. 29).

Graham, Robert (2018). Synthetic Homology in Homotopy Type Theory. arXiv:

1706.01540 [math.LO] (cit. on p. 29).

Hou (Favonia), Kuen-Bang, Eric Finster, Daniel R. Licata, and

Peter LeFanu Lumsdaine (2016). “A Mechanization of the Blakers-Massey

Connectivity Theorem in Homotopy Type Theory”. In: Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’16.

New York, NY, USA: Association for Computing Machinery, pp. 565–574.

isbn: 9781450343916. doi: 10.1145/2933575.2934545 (cit. on p. 26).

Hou (Favonia), Kuen-Bang and Robert Harper (2018). “Covering Spaces in

Homotopy Type Theory”. In: 22nd International Conference on Types for Proofs
and Programs (TYPES 2016). Ed. by Silvia Ghilezan, Herman Geuvers, and

Jelena Ivetic. Vol. 97. Leibniz International Proceedings in Informatics

(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 11:1–11:16. doi: 10.4230/LIPIcs.TYPES.2016.11.
Hou (Favonia), Kuen-Bang and Michael Shulman (2016). “The Seifert-van

Kampen Theorem in Homotopy Type Theory”. In: 25th EACSL Annual
Conference on Computer Science Logic (CSL 2016). Leibniz International
Proceedings in Informatics (LIPIcs). Vol. 62. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 22:1–22:16. doi:

10.4230/LIPICS.CSL.2016.22.
Kraus, Nicolai and Thorsten Altenkirch (2018). “Free Higher Groups in

Homotopy Type Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. LICS ’18. Oxford, United Kingdom:

Association for Computing Machinery, pp. 599–608. isbn: 9781450355834.

doi: 10.1145/3209108.3209183.
Kraus, Nicolai and Jakob von Raumer (2021). “Path spaces of higher inductive

types in homotopy type theory”. In: Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’19. Vancouver,

Canada: IEEE Press. doi: 10.5555/3470152.3470159 (cit. on p. 27).

Lamiaux, Thomas, Axel Ljungström, and Anders Mörtberg (2023).

“Computing Cohomology Rings in Cubical Agda”. In: Proceedings of the 12th

https://arxiv.org/abs/2401.15037
https://doi.org/10.2140/agt.2023.23.2107
https://doi.org/10.21136/hs.2020.01
https://doi.org/10.1016/j.jpaa.2021.106848
https://arxiv.org/abs/1808.10690
https://arxiv.org/abs/1706.01540
https://doi.org/10.1145/2933575.2934545
https://doi.org/10.4230/LIPIcs.TYPES.2016.11
https://doi.org/10.4230/LIPICS.CSL.2016.22
https://doi.org/10.1145/3209108.3209183
https://doi.org/10.5555/3470152.3470159

BIBLIOGRAPHY 32

ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP

2023. New York, NY, USA: Association for Computing Machinery,

pp. 239–252. doi: 10.1145/3573105.3575677 (cit. on p. 29).

Licata, Daniel R. and Eric Finster (2014). “Eilenberg-MacLane spaces in

homotopy type theory”. In: Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). CSL-LICS ’14. Vienna, Austria: Association for Computing

Machinery. doi: 10.1145/2603088.2603153 (cit. on p. 29).

Licata, Daniel R. and Michael Shulman (2013). “Calculating the Fundamental

Group of the Circle in Homotopy Type Theory”. In: Proceedings of the 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’13.

USA: IEEE Computer Society, pp. 223–232. doi: 10.1109/LICS.2013.28.
Ljungström, Axel and Anders Mörtberg (June 2023). “Formalizing

𝜋4(𝑆3) ≃ ℤ/2ℤ and Computing a Brunerie Number in Cubical Agda”. In:

2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
IEEE. doi: 10.1109/lics56636.2023.10175833 (cit. on p. 29).

Lumsdaine, Peter LeFanu and Daniel R. Licata (2012). Freudenthal Suspension
Theorem. Agda formalization. url:

https://github.com/dlicata335/hott-
agda/commits/master/homotopy/Freudenthal.agda (cit. on p. 26).

Myers, David Jaz (July 2022). “Good Fibrations through the Modal Prism”. In:

Higher Structures 6.1, pp. 212–255. doi: 10.21136/hs.2022.04 (cit. on p. 29).

Myers, David Jaz and Mitchell Riley (2023). Commuting Cohesions. arXiv:

2301.13780 [math.CT] (cit. on p. 29).

Rĳke, Egbert (2022). “Introduction to Homotopy Type Theory”. Book draft;

version of 8 April. url:

https://raw.githubusercontent.com/martinescardo/HoTTEST-
Summer-School/main/HoTT/hott-intro.pdf (cit. on p. 1).

Rĳke, Egbert, Michael Shulman, and Bas Spitters (2020). “Modalities in

homotopy type theory”. In: Log. Methods Comput. Sci. 16.1, Paper No. 2, 79

(cit. on p. 29).

Scoccola, Luis (2020). “Nilpotent types and fracture squares in homotopy type

theory”. In: Mathematical Structures in Computer Science 30.5, pp. 511–544.

doi: 10.1017/S0960129520000146 (cit. on p. 29).

Shulman, Michael (2018). “Brouwer’s fixed-point theorem in real-cohesive

homotopy type theory”. In: Math. Structures Comput. Sci. 28.6, pp. 856–941.

doi: 10.1017/S0960129517000147.
— (2021). “Homotopy type theory: the logic of space”. In: New spaces in

mathematics—formal and conceptual reflections. Cambridge Univ. Press,

Cambridge, pp. 322–403.

Sojakova, Kristina and G. A. Kavvos (2022). “Syllepsis in Homotopy Type

Theory”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’22. Haifa, Israel: Association for Computing

Machinery. doi: 10.1145/3531130.3533347 (cit. on p. 29).

https://doi.org/10.1145/3573105.3575677
https://doi.org/10.1145/2603088.2603153
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1109/lics56636.2023.10175833
https://github.com/dlicata335/hott-agda/commits/master/homotopy/Freudenthal.agda
https://github.com/dlicata335/hott-agda/commits/master/homotopy/Freudenthal.agda
https://doi.org/10.21136/hs.2022.04
https://arxiv.org/abs/2301.13780
https://raw.githubusercontent.com/martinescardo/HoTTEST-Summer-School/main/HoTT/hott-intro.pdf
https://raw.githubusercontent.com/martinescardo/HoTTEST-Summer-School/main/HoTT/hott-intro.pdf
https://doi.org/10.1017/S0960129520000146
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1145/3531130.3533347

BIBLIOGRAPHY 33

Swan, Andrew W (Jan. 2022). “On the Nielsen-Schreier Theorem in Homotopy

Type Theory”. In: Logical Methods in Computer Science Volume 18, Issue 1.

doi: 10.46298/lmcs-18(1:18)2022 (cit. on p. 29).

The HoTT Library (n.d.). a Coq library of formalized proofs, available at

https://github.com/HoTT/HoTT.
Univalent Foundations Program, The (2013). Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study:

https://homotopytypetheory.org/book (cit. on pp. 1, 3, 24).

Voevodsky, Vladimir, Benedikt Ahrens, Daniel Grayson, et al. (n.d.). UniMath —
a computer-checked library of univalent mathematics. available at

http://UniMath.org.
Wärn, David (Sept. 2023). “Eilenberg–Maclane spaces and stabilisation in

homotopy type theory”. In: Journal of Homotopy and Related Structures 18.2–3,

pp. 357–368. doi: 10.1007/s40062-023-00330-5 (cit. on p. 29).

— (2024). Path spaces of pushouts. arXiv: 2402.12339 [math.AT] (cit. on p. 27).

https://doi.org/10.46298/lmcs-18(1:18)2022
https://github.com/HoTT/HoTT
https://homotopytypetheory.org/book
http://UniMath.org
https://doi.org/10.1007/s40062-023-00330-5
https://arxiv.org/abs/2402.12339

	1 Truncated and connected types
	1.1 Motivation 1: Understanding types better
	1.2 Motivation 2: Homotopy groups of spheres
	1.3 Homotopical notions in type theory
	1.4 Path algebra
	1.5 Homotopy groups
	1.6 The fundamental theorem of identity types
	1.7 Exercises

	2 A menagerie of higher inductive types
	2.1 The circle
	2.2 Pushouts
	2.3 Suspensions
	2.4 The three-by-three lemma and applications
	2.5 Exercises

	3 The Hopf fibration and the LES
	3.1 The fundamental group of the circle
	3.2 Multiplying points on the circle
	3.3 The Hopf fibration
	3.4 The long exact sequence
	3.5 Exercises

	4 Freudenthal and Degrees
	4.1 Whitehead's theorem and principle
	4.2 Join and wedge connectivity
	4.3 The zigzag construction
	4.4 Exercises

	5 Outlook
	Bibliography

