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Motivation for Univalent Foundations

For the purposes of this talk, I’m going to motivate Univalent
Foundations through a basic observation of mathematical practice:

The Structure Identity Princinple
Isomorphic structures are structurally identical in that they share the
same structural properties.

And in mathematical practice, isomorphic structures are used
interchangeably.

Therefore, isomorphic structures should be identical (since that’s
what identity is for: substitution).

However, what exactly are the structural properties? And how can we
achieve that isomorphic structures are actually identical?
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Failure of the SIP in material set theory

The von Neumann naturals: ;; f;g; f;; f;gg; : : :
The Zermelo naturals: ;; f;g; ff;gg; : : :.

These give rise to isomorphic Peano structures, but differ on
whether, e.g.,

0 2 2‹

That is, therefore, not a structural property.



Failure of the SIP in material set theory

The von Neumann naturals: ;; f;g; f;; f;gg; : : :
The Zermelo naturals: ;; f;g; ff;gg; : : :.

These give rise to isomorphic Peano structures, but differ on
whether, e.g.,

0 2 2‹

That is, therefore, not a structural property.



SIP in Homotopy Type Theory

Homotopy type theory (HoTT) is intensional dependent type theory
with the Univalence Axiom (to be defined in the sequel).

SIP in HoTT
Isomorphic structures are identical.

If A;BWC where C is a type of structures of some kind, then

A ŠC B ! IdC .A;B/



“Relevant” proofs

Obviously, if this approach is to work, an identity claim cannot be
“proof-irrelevant” in the usual sense, because there are two
isomorphisms of a two-element set with itself, and we’re in trouble if
we don’t know which one we’re using when we’re substituting using
such an identity.

Therefore, in the Univalent Foundations we need to be able to
recover information from proofs. This is well-known from constructive
mathematics, where for instance an inequality between real numbers
carries important information (at what precision the numbers differ).



Relevant propositions in mathematical practice

Even in ordinary mathematical practice, examples of proof-relevance
abounds.

This is particularly true in higher algebra (algebraic topology and
algebraic geometry) where we find writing like “by the proof of . . . ” or
“the map constructed in the proof of . . . ”



Higher dimensional identity

It is now well known that the correct notion of structural isomorphism
various according to the “dimensionality” of the concepts involved.

Dimension Structure Criterion of identity
0 Sets: elements/objects equality
1 Categories: plus arrows isomorphism
2 2-categories: plus 2-arrows equivalence
:::

:::
:::

In Homotopy Type Theory, the notion of identity will capture all these.



Structuralism versus materialism

We have two competing notions of set theory:

Material set theories, such as ZFC.

Structural set theories, such as ETCS.

ETCS goes a long way towards realizing our structuralist goals, but
fails for two reasons:

1 Too many things are “coded”: subsets, functions, pairs. (Note
that at least in ZFC, subsets are just subsets.)

2 Even though it only gives structural properties, we can’t reap the
benefits, i.e., the Strong Structure Identity Principle.

Dependent type theory with the Axiom of Univalence solves these
problems, with a language that’s more natural.



Aside: Structuralist elements in Cantor

Cantor, Beiträge zur Begründung der transfiniten Mengenlehre,
1895:
Every set M has a definite “power,” which we will also call its
“cardinal number.”
We will call by the name “power” or “cardinal number” of M the
general concept by which, by means of our active faculty of thought,
arises from the set M when we make abstraction of the nature of its
various elements m and of the order in which they are given.
We denote the result of this double act of abstraction, the cardinal
number or power of M , by M .
Since every single element m, if we abstract from its nature,

becomes a “unit,” the cardinal number M is a definite set composed
of units, and this number has existence in our mind as an intellectual
image or projection of the given set M .
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Review of Constructive Type Theory

Usually motivated through the Brouwer-Heyting-Kolmogorov
interpretation and Martin-Löf’s meaning explanations.

However, we can also motivate dependent type theory directly as the
natural way to build a language containing only structural properties.

To capture the idea that some mathematical objects are what they
are “by their very nature” (essentially, not accidentally), we build the
language on typing judgements, � ` aWA.

This should be a decidable relation (“we recognize a proof when we
see it”).



Judgements forms

A judgement has the form � ` B where � is a context

x1WA1; x2WA2; : : : ; xnWAn

where each Ai may reference the previous variables x1; : : : ; xi�1,
and B has one of the forms

A Type

aWA

A D B Type

a D bWA

(and all these terms may reference the variables xi in the context.)



Dependent Products

As an example we give the rules for dependent products:

� ` A Type �; xWA ` B Type
� ` …xWAB Type

�; xWA ` bWB

� ` œxWA: bW…xWAB

� ` f W…xWAB � ` aWA

� ` f .a/WBŒx´ a�

�; xWA ` bWB � ` aWA

� ` .œxWA: b/.a/ D bŒx´ a�WBŒx´ a�



Basic types

It a minimum we need

0; 1;B;N

…xWAB

†xWAB

Then we can define

A! B ´ …�WAB

A � B ´ †�WAB

With inductive types, we only need dependent product.



Propositions as Types

Proposition Type
? 0

> 1

A ^ B A � B

A _ B AC B

A) B A! B

8xWA:B.x/ …xWAB.x/

9xWA:B.x/ †xWAB.x/

x DA y IdA.x; y/
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Identity Types

� ` aWA � ` bWA
� ` IdA.a; b/ Type

� ` aWA
� ` r.a/W IdA.a; a/

�; xWA; yWA;pW IdA.x; y/ ` C Type
�; xWA ` bWC Œy ´ x; p´ r.x/�

�; xWA; yWA;pW IdA.x; y/ ` J.C; œx: b/WC

�; xWA; yWA;pW IdA.x; y/ ` C Type
�; xWA ` bWC Œy ´ x; p´ r.x/�

�; xWA ` J.C; œx: b/Œy ´ x; p´ r.x/� D bWC Œy ´ x; p´ r.x/�



Identity Types – induction principle

In fact, IdA.a; b/ is an inductive family with one constructor r.x/, so
the elimination rule is an induction principle.

Note
To use induction on pW IdA.a; b/ the type must be fully general. So
we can’t use induction on an assumption pW IdA.a; a/ to conclude
that p D r.a/.
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The Hofmann-Streicher Groupoid Model

In the 1990’s Martin Hofmann and Thomas Streicher noted that the
identity types satisfy conditions similar to the laws of groupoids:

Indeed, r.a/ gives unit elements in IdA.a; a/, and we can derive
inverses f �1

W IdA.b; a/ and composites g ı f W IdA.a; c/ for
f W IdA.a; b/ and gW IdA.b; c/ by identity induction.

These satisfy the groupoid laws up to higher propositional identities.
They conjectured that identity thus should be equipped with the
structure of weak higher dimensional groupoids.

This was later verified by Benno van den Berg and Richard Garner,
and Peter LeFanu Lumsdaine.



The Model in Kan simplicial sets

Around 2006, Vladimir Voevodsky noted that type theory has a
homotopical model in simplicial sets, using Kan fibrations to model
dependent types, and the usual path-objects from the homotopy
theory of simplicial sets to model identity types.

This models verifies (and perhaps inspired?) the Univalence Axiom.



The Homotopy-theoretical Interpretation

Slogan
We can interpret

types as spaces

identity types as path spaces



Models in Abstract Homotopy Theory

Weak factorization systems form one half of Quillen’s model
categories which are an abstract approach to homotopy theory.

Intentional dependent type theory is sound and complete for this
class of categorical models following work by Steve Awodey, Michael
Warren, Nicola Gambino and Richard Garner.
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Mathematics in Homotopy Type Theory

Can we give some glimpse of what mathematics in Homotopy Type
Theory looks like?



Stratification of Types into Homotopy Levels

Some types in Homotopy Type Theory have degenerate identity
types. This gives rise to a whole hierarchy of homotopy levels
(hLevels) analogous to the notion of truncated spaces in topology. A
type represents an n-truncated space if and only if it has homotopy
level nC 2.

hLevel Name Definition
0 contractible isContr.X/´ †xWX…yWX IdX .y; x/

1 hProp …xWX…yWX isContr.IdX .x; y//

2 hSet …xWX…yWX isProp.IdX .x; y//

3 hGroupoid
:::

:::
:::

:::

n h-(n � 2)-groupoid
:::

:::
:::

:::



Logic in Homotopy Type Theory

By default, reasoning in homotopy type theory is fully “proof-relevant”
via Propositions-as-Types.

Thus to “prove as proposition” means to give an element of the type,
and to say two propositions “are equivalent” means to construct a
homotopy equivalence between them.

This fits mathematical practice because, after all, most propositions
are h-propositions. And for those that aren’t, we need the extra
information.



Modalities

That said, there are many cases where we want to reason differently,
and many of these are captured by modalities. In analogy with the
well-known modalities, necessarily and possibly (which are not
formalized in HoTT), we might have

Adverb Modality
classically (or surely?) double-negation

anonymously (or merely?) .�1/-truncation (giving hProps)
:::

:::

locally sheafification for a subtopos
codiscretely # (sharp; in a cohesive topos)



Homotopy Equivalences

There are several ways to define that f WA! B is an equivalence
internally in homotopy type theory:

There is a function gWB ! A, homotopies �Wf ı g! 1B and
� Wg ı f ! 1A and one higher homotopy f .�/! �f .

Every homotopy fiber of f is contractible.

f is both surjective and injective (read correctly).

Whichever of these we choose, the rest are homotopy equivalent to
it!



Univalence

To set up the univalence axiom we introduce type universes, U ,
reflecting the judgement A Type.

The Univalence Axiom (Voevodsky)
For types A and B , the identity type IdU .A;B/ is equivalent to the
type Eq.A;B/ of (homotopy) equivalences between A and B . More
precisely, the canonical map:

AWType; BWType ` IdU .A;B/! Eq.A;B/

is itself an equivalence.



Talking points

The real numbers,

Ordinals,

Higher inductive types (combinatorial geometry, localization),

Ontology: do all types come with a cell decomposition?

Higher coinductive types (Postnikov systems?),

Computational interpretation coexisting with the
homotopy-theoretical.

Generalized predicativity forced because of higher topos theory.
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Conclusion from a working mathematician

Urs Schreiber, What is Homotopy Type Theory Good For?
That says: not only is there some formal language to capture
homotopy theory. No, moreover: it’s a natural language, potentially
more natural than the language you have been using so far, and
speaking this language may help to make more transparent
phenomena in homotopy theory that are less transparent otherwise.



Outline

1 Outline

2 Motivation for Univalent Foundations

3 Review of Constructive Type Theory

4 The Homotopy-theoretical Interpretation

5 Mathematics in Homotopy Type Theory

6 Open Problems



Open Problems

Proof-theoretic strength of the univalence axiom? (Conjecture:
conservative over MLTT, in the sense that an internal model
construction is possible).

Computational interpretation of univalence (seems easy enough
but details are tricky): Harper-Licata’s two-dimensional type
theory is a beginning.

Formalization of higher-dimensional inductive and coinductive
types.

Analog of cumulative hierarchy to facilitate set-theoretical
research. (E.g.: reflection principles or induction principles for
universes – problem: seems to clash with univalence!)
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